Hemoglobin oxygen saturation measurements using resonance Raman intravital microscopy (original) (raw)

Abstract

A system is described for in vivo noninvasive measurements of hemoglobin oxygen saturation (HbO 2 Sat) at the microscopic level. The spectroscopic basis for the application is the resonant Raman enhancement of Hb in the violet/ultraviolet region, allowing simultaneous identification of oxy-and deoxyhemoglobin with the same excitation wavelength. The heme vibrational bands are well known but the technique has never been used to determine microvascular HbO 2 Sat in vivo. A diode laser light (power: 0.3 mW) was focused onto sample areas of 15-30 µm in diameter. Raman spectra were obtained in backscattering geometry using a microscope coupled to a spectrometer and a cooled detector. Calibration was performed in vitro using glass capillaries containing blood at several Hb concentrations, equilibrated at various oxygen tensions. HbO 2 Sat was estimated using the Raman band intensities at 1360 cm -1 and 1375 cm -1 .

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (53)

  1. Asher S. Resonance Raman spectroscopy of hemoglobin. Methods Enzymol 76: 371-413, 1981.
  2. Baraga JJ, Feld MS, and Rava RP. In situ optical histochemistry of human artery using near infrared Fourier transform Raman spectroscopy. Proc Natl Acad Sci U S A 89: 3473-3477, 1992.
  3. Bauer NJ, Wicksted JP, Jongsma FH, March WF, Hendrikse F, and Motamedi M. Noninvasive assessment of the hydration gradient across the cornea using confocal Raman spectroscopy. Invest Ophthalmol Vis Sci 39: 831-835, 1998.
  4. Borders JL and Granger HJ. An optical doppler intravital velocimeter. Microvasc Res 27: 117-127, 1984.
  5. Brunner H, Mayer A, and Sussner H. Resonance raman scattering on the haem group of oxy-and deoxyhaemoglobin. J Mol Biol 70: 153-156., 1972.
  6. Brunner H and Sussner H. Resonance Raman scattering on haemoglobin. Biochim Biophys Acta 310: 20-31., 1973.
  7. Bruzzese FJ, Dix JA, Rava RP, and Cerny LC. Resonance Raman spectroscopy of chemically modified hemoglobins. Biomater Artif Cells Artif Organs 18: 143-156, 1990.
  8. Buschman HP, Marple ET, Wach ML, Bennett B, Schut TC, Bruining HA, Bruschke AV, van der Laarse A, and Puppels GJ. In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy. Anal Chem 72: 3771-3775, 2000. H-01171-2004.R3 32
  9. Carey PR. Resonance Raman spectroscopy in biochemistry and biology. Q Rev Biophys 11: 309-370., 1978.
  10. Caspers PJ, Lucassen GW, Carter EA, Bruining HA, and Puppels GJ. In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. J Invest Dermatol 116: 434-442, 2001.
  11. Caspers PJ, Lucassen GW, Wolthuis R, Bruining HA, and Puppels GJ. In vitro and in vivo Raman spectroscopy of human skin. Biospectroscopy 4: S31-39, 1998.
  12. Das TK, Couture M, Ouellet Y, Guertin M, and Rousseau DL. Simultaneous observation of the O---O and Fe---O2 stretching modes in oxyhemoglobins. Proc Natl Acad Sci U S A 98: 479-484, 2001.
  13. Davis MJ. Determination of volumetric flow in capillary tubes using an optical Doppler velocimeter. Microvasc Res 34: 223-230, 1987.
  14. Ellis CG, Ellsworth ML, and Pittman RN. Determination of red blood cell oxygenation in vivo by dual video densitometric image analysis. Am J Physiol 258: H1216-1223, 1990.
  15. Ellsworth ML and Pittman RN. Evaluation of photometric methods for quantifying convective mass transport in microvessels. Am J Physiol 251: H869-879, 1986.
  16. Ellsworth ML, Pittman RN, and Ellis CG. Measurement of hemoglobin oxygen saturation in capillaries. Am J Physiol 252: H1031-1040, 1987.
  17. Ellsworth ML, Popel AS, and Pittman RN. Assessment and impact of heterogeneities of convective oxygen transport parameters in capillaries of striated muscle: experimental and theoretical. Microvasc Res 35: 341-362., 1988.
  18. Erckens RJ, Jongsma FH, Wicksted JP, Hendrikse F, March WF, and Motamedi H-01171-2004.R3 33
  19. M. Raman spectroscopy in ophthalmology: from experimental tool to applications in vivo. Lasers Med Sci 16: 236-252, 2001.
  20. Gellermann W, Ermakov IV, Ermakova MR, McClane RW, Zhao DY, and Bernstein PS. In vivo resonant Raman measurement of macular carotenoid pigments in the young and the aging human retina. J Opt Soc Am A Opt Image Sci Vis 19: 1172-1186., 2002.
  21. Gniadecka M, Wulf HC, Johansson CK, Ullman S, Halberg P, and Rossen K. Cutaneous tophi and calcinosis diagnosed in vivo by Raman spectroscopy. Br J Dermatol 145: 672-674., 2001.
  22. Golub AS and Pittman RN. Thermostatic animal platform for intravital microscopy of thin tissues. Microvasc Res 66: 213-217, 2003.
  23. Hanlon EB, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M, Kramer JR, Itzkan I, Dasari RR, and Feld MS. Prospects for in vivo Raman spectroscopy. Phys Med Biol 45: R1-59, 2000.
  24. Hata TR, Scholz TA, Ermakov IV, McClane RW, Khachik F, Gellermann W, and Pershing LK. Non-invasive raman spectroscopic detection of carotenoids in human skin. J Invest Dermatol 115: 441-448., 2000.
  25. Huizinga A, Bot AC, de Mul FF, Vrensen GF, and Greve J. Local variation in absolute water content of human and rabbit eye lenses measured by Raman microspectroscopy. Exp Eye Res 48: 487-496, 1989.
  26. Katz A, Kruger EF, Minko G, Liu CH, Rosen RB, and Alfano RR. Detection of glutamate in the eye by Raman spectroscopy. J Biomed Opt 8: 167-172., 2003.
  27. Nollmann M and Etchegoin P. Photoinduced oxygen dynamics in lyophilized H-01171-2004.R3 34 hemoglobin. Spectrochim Acta A Mol Biomol Spectrosc 56: 2817-2829, 2000.
  28. Ong CW, Shen ZX, Ang KKH, Kara UAK, and Tang SH. Resonance Raman microspectroscopy of normal erythrocytes and Plasmodium berghei-infected erythrocytes. Applied Spectroscopy 53: 1097-1101, 1999.
  29. Pittman RN. In vivo photometric analysis of hemoglobin. Ann Biomed Eng 14: 119-137, 1986.
  30. Pittman RN. Microvessel blood oxygen measurement techniques. In: Microcirculatory Technology, edited by Baker CH and Nastuk WL: Academic Press, 1986, p. 367-389.
  31. Pittman RN and Duling BR. Measurement of percent oxyhemoglobin in the microvasculature. J Appl Physiol 38: 371-388, 1975.
  32. Pittman RN and Duling BR. A new method for the measurement of percent oxyhemoglobin. J Appl Physiol 38: 315-320, 1975.
  33. Puppels GJ, de Mul FF, Otto C, Greve J, Robert-Nicoud M, Arndt-Jovin DJ, and Jovin TM. Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature 347: 301-303, 1990.
  34. Ramser K, Bjerneld EJ, Fant C, and Kall M. Importance of substrate and photo- induced effects in Raman spectroscopy of single functional erythrocytes. J Biomed Opt 8: 173- 178, 2003.
  35. Ramser K, Logg K, Goksor M, Enger J, Kall M, and Hanstorp D. Resonance Raman spectroscopy of optically trapped functional erythrocytes. J Biomed Opt 9: 593-600, 2004.
  36. Sato H, Chiba H, Tashiro H, and Ozaki Y. Excitation wavelength-dependent changes in Raman spectra of whole blood and hemoglobin: comparison of the spectra with 514.5-, 720-, H-01171-2004.R3 35
  37. and 1064-nm excitation. J Biomed Opt 6: 366-370, 2001.
  38. Spiro TG. Resonance Raman spectra of hemoproteins. Methods Enzymol 54: 233-249, 1978.
  39. Spiro TG and Czernuszewicz RS. Resonance Raman spectroscopy of metalloproteins. Methods Enzymol 246: 416-460, 1995.
  40. Spiro TG and Li X-Y. Resonance Raman spectroscopy of metalloporphyrins. In: Biological Applications of Raman Spectroscopy, edited by Spiro TG. New York: Wiley, 1988, p. 1-38.
  41. Spiro TG and Strekas TC. Resonance Raman spectra of heme proteins. Effects of oxidation and spin state. J Am Chem Soc 96: 338-345., 1974.
  42. Strekas TC and Spiro TG. Hemoglobin: resonance Raman spectra. Biochim Biophys Acta 263: 830-833., 1972.
  43. Terner J, Voss DF, Paddock C, Miles RB, and Spiro TG. Picosecond Resonance Raman Spectrum of the Oxyhemoglobin Photoproduct. Evidence for an Electronically Excited State. J Phys Chem 86: 859-861, 1982.
  44. Torres Filho IP, Contaifer Junior D, Garcia S, and Neves LdS. Vasomotion in rat mesentery during hemorrhagic hypotension. Life Sci 68: 1057-1065, 2001.
  45. Torres Filho IP, Contaifer Junior D, Garcia S, and Torres LN. Effects of hypertonic saline solution on mesenteric microcirculation. Shock 15: 353-359, 2001.
  46. Torres Filho IP and Intaglietta M. Microvessel PO2 measurements by phosphorescence decay method. Am J Physiol 265: H1434-1438, 1993.
  47. Torres LN and Torres Filho IP. Determination of macromolecular exchange and PO2 H-01171-2004.R3 36
  48. in the microcirculation: a simple system for in vivo fluorescence and phosphorescence videomicroscopy. Braz J Med Biol Res 34: 129-135, 2001.
  49. van Assendelft OW and Zijlstra WG. Extinction coefficients for use in equations for the spectrophotometric analysis of haemoglobin mixtures. Anal Biochem 69: 43-48, 1975.
  50. Wang Y and Van Wart HE. Raman and resonance Raman spectroscopy. Methods Enzymol 226: 319-373, 1993.
  51. Wood BR and McNaughton D. Micro-Raman characterization of high-and low-spin heme moieties within single living erythrocytes. Biopolymers 67: 259-262, 2002.
  52. Wood BR and McNaughton D. Raman excitation wavelength investigation of single red blood cells in vivo. Journal of Raman Spectroscopy 33: 517-523, 2002.
  53. Wood BR, Tait B, and McNaughton D. Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte. Biochim Biophys Acta 1539: 58-70, 2001.