Structure-function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses (original) (raw)
Related papers
Inflammation, 2011
Inflammatory diseases remain an important cause of morbidity and mortality. Cathelicidins are immunomodulatory and antimicrobial peptides with potent anti-endotoxic properties. Although the effects of the human cathelicidin LL-37 on cellular responses to Toll-like receptor (TLR) ligands have been investigated, its effects on responses to other pro-inflammatory stimuli have not been well studied. Triggering receptor expressed on myeloid cells (TREM-1) acts to amplify inflammatory responses and plays important roles in the pathogenesis of endotoxemia. In this work, the effects of LL-37 on responses to TREM-1 stimulation, alone and in the presence of a range of microbial compounds, were analyzed. It was shown that in peripheral blood mononuclear cells LL-37 strongly suppressed synergistic responses to TREM-1 and TLR4 stimulation, partly through the inhibition of TREM-1 expression on monocytes; similar effects were observed using the TLR2 ligand lipoteichoic acid. In contrast, LL-37 stimulated TREM-1 upregulation by peptidoglycan (PGN, TLR2 ligand that is also recognized via nucleotide-binding oligomerization domain containing 2 after fragmentation and intracellular uptake), as well as the responses to combined TREM-1 and PGN stimulation, possibly via the p38 mitogen-activated protein kinase pathway. LL-37 did not affect TREM-1-induced neutrophil degranulation or the production of reactive oxygen species and interleukin-8 by neutrophils. These findings provide further insight into the roles of LL-37 during inflammation and may have implications for its in vivo immunomodulatory properties and for the design of synthetic cathelicidin derivatives as anti-inflammatory and anti-endotoxic molecules.
Journal of Cystic Fibrosis, 2009
The human cathelicidin antimicrobial peptide acts as an effector molecule of the innate immune system with direct antimicrobial and immunomodulatory effects. The aim of this study was to test whether the cathelicidin LL-37 modulates the response of neutrophils to microbial stimulation. Human neutrophils were exposed to LPS, Staphylococcus aureus and Pseudomonas aeruginosa subsequent to incubation with LL-37 and cytokine release was measured by ELISA. The incubation with LL-37 significantly decreased the release of proinflammatory cytokines from stimulated human neutrophils. ROS production of neutrophils was determined by a luminometric and a flow cytometry method. The peptide induced the production of ROS and the engulfment of bacteria into neutrophils. Peritoneal mouse neutrophils isolated from CRAMP-deficient and WT animals were treated with LPS and TNF-α in the supernatant was measured by ELISA. Antimicrobial activity of neutrophils was detected by incubating neutrophils isolated from CRAMP-knockout and WT mice with bacteria. Neutrophils from CRAMP-deficient mice released significantly more TNF-α after bacterial stimulation and showed decreased antimicrobial activity as compared to cells from WT animals. In conclusion, LL-37 modulates the response of neutrophils to bacterial activation. Cathelicidin controls the release of inflammatory mediators while increasing antimicrobial activity of neutrophils.
The Journal of Immunology, 2006
The sole human cathelicidin peptide, LL-37, has been demonstrated to protect animals against endotoxemia/sepsis. Low, physiological concentrations of LL-37 (≤1 μg/ml) were able to modulate inflammatory responses by inhibiting the release of the proinflammatory cytokine TNF-α in LPS-stimulated human monocytic cells. Microarray studies established a temporal transcriptional profile and identified differentially expressed genes in LPS-stimulated monocytes in the presence or absence of LL-37. LL-37 significantly inhibited the expression of specific proinflammatory genes up-regulated by NF-κB in the presence of LPS, including NFκB1 (p105/p50) and TNF-α-induced protein 2 (TNFAIP2). In contrast, LL-37 did not significantly inhibit LPS-induced genes that antagonize inflammation, such as TNF-α-induced protein 3 (TNFAIP3) and the NF-κB inhibitor, NFκBIA, or certain chemokine genes that are classically considered proinflammatory. Nuclear translocation, in LPS-treated cells, of the NF-κB subuni...
Journal of Leukocyte Biology, 2006
Genomic approaches can be exploited to expose the complexities and conservation of biological systems such as the immune network across various mammalian species. In this study, temporal transcriptional expression profiles were analyzed in human and bovine monocytic cells in response to the TLR-4 agonist, LPS, in the presence or absence of their respective host defense peptides. The cathelicidin peptides, human LL-37 and bovine myeloid antimicrobial peptide-27 (BMAP-27), are homologs, yet they have diverged notably in terms of sequence similarity. In spite of their low sequence similarities, both of these cathelicidin peptides demonstrated potent, antiendotoxin activity in monocytic cells at low, physiologically relevant concentrations. Microarray studies indicated that 10 ng/ml LPS led to the up-regulation of 125 genes in human monocytes, 106 of which were suppressed in the presence of 5 g/ml of the human peptide LL-37. To confirm and extend these data, temporal transcriptional responses to LPS were assessed in the presence or absence of the species-specific host defense peptides by quantitative real-time PCR. The transcriptional trends of 20 LPS-induced genes were analyzed in bovine and human monocytic cells. These studies demonstrated conserved trends of gene responses in that both peptides were able to profoundly suppress many LPS-induced genes. Consistent with this, the human and bovine peptides suppressed LPS-induced translocation of NF-B subunits p50 and p65 into the nucleus of monocytic cells. However, there were also distinct differences in responses to LPS and the peptides; for example, treatment with 5 g/ml BMAP-27 alone tended to influence gene expression (RELA, TNF-␣-induced protein 2, MAPK phosphatase 1/dual specificity phosphatase 1, IBB, NFBIL1, TNF receptor-associated factor 2) to a greater extent than did the same amount of human LL-37. We hypothesize that the immunomodulatory effects of the species-specific host defense peptides play a critical role in regulating inflammation and represent an evolutionarily conserved mechanism for maintaining homeostasis, although the sequence divergence of these peptides is substantial. J. Leukoc. Biol. 80: 1563-1574; 2006.
The anti-microbial peptide LL37 inhibits the activation of dendritic cells by TLR ligands
International …, 2006
The endogenous anti-microbial peptide LL-37/hCAP-18 is an effector molecule of the innate host defense system at surfaces of the body. Besides its direct anti-microbial activity, the peptide interacts with different cell types. Dendritic cells (DCs) play a central role in mucosal host defense. It was the aim of the study to determine whether LL-37 modulates the response of DCs to pathogen-associated molecular patterns. Monocyte-derived DCs were stimulated with the Toll-like receptors (TLRs) ligands LPS, lipoteichoic acid and flagellin. We measured classical markers of DC maturation and assayed the ability of the DCs to activate T cell responses. Co-incubation with LL-37 resulted in suppressed activation of DCs. Levels of released IL-6, IL-12p70 and TNF-a and surface expression of HLA-DR, CD80, CD83, CD86 and the chemokine receptor CCR7 were decreased. Exposure of DCs to LL-37 during LPS exposure induced co-cultured naive T cells to produce less IL-2 and IFN-g and decreased their proliferation. The response of memory T cells to a recall antigen was also decreased. In conclusion, we demonstrate that the anti-microbial peptide LL-37 inhibits the activation of DCs by TLR ligands. We propose that LL-37 is a regulator of host defense responses at the intersection of innate and adaptive immune systems.
Journal of immunology (Baltimore, Md. : 1950), 2016
The liver is a major organ that removes waste substances from the blood, and liver sinusoidal endothelial cells (LSECs) are professional scavenger cells, which incorporate and degrade various endogenous and exogenous molecules including pathogenic factor LPS. Mammalian cells express a number of peptide antibiotics that function as effectors in the innate host defense systems. LL-37, a human cathelicidin antimicrobial peptide, has a potent LPS-neutralizing activity and exhibits protective actions on various infection models. However, the effect of LL-37 on the LPS clearance has not been clarified. In this study, to further understand the host-protective mechanism of LL-37, we evaluated the effect of LL-37 on the LPS clearance in vitro. LL-37 enhanced the LPS uptake by human LSECs. Of interest, LL-37 was similarly incorporated into LSECs both in the presence and the absence of LPS, and the incorporated LPS and LL-37 were colocalized in LSECs. Importantly, the uptake of LPS and LL-37 w...
The antimicrobial peptide cathelicidin enhances activation of lung epithelial cells by LPS
The FASEB Journal, 2010
Epithelial cells (ECs) are usually hyporesponsive to various microbial products. Detection of lipopolysaccharide (LPS), the major component of gram-negative bacteria, is impeded, at least in part, by intracellular sequestration of its receptor, Toll-like receptor-4 (TLR4). In this study, using human bronchial ECs (hBECs) as a model of mucosal epithelium, we tested the hypothesis that the human LPS-binding, membrane-active cationic host defense peptide cathelicidin LL-37 augments epithelial response to LPS by facilitating its delivery to TLR4-containing intracellular compartments. We found that LL-37 significantly increases uptake of LPS by ECs with subsequent targeting to cholera toxin subunit B-labeled structures and lysosomes. This uptake is peptide specific, dose and time dependent, and involves the endocytotic machinery, functional lipid rafts, and epidermal growth factor receptor signaling. Cathelicidin-dependent LPS internalization resulted in significant increased release of the inflammatory cytokines IL-6 and IL-8. This indicates that, in ECs, this peptide may replace LPS-binding protein functions. In polarized ECs, the effect of LL-37 was restricted to the basolateral compartment of the epithelial membrane, suggesting that LL-37-mediated activation of ECs by LPS may be relevant to disease conditions associated with damage to the epithelial barrier. In summary, our study identified a novel role of LL-37 in host-microbe interactions as a host factor that licenses mucosal ECs to respond to LPS.
The Human Antimicrobial Peptide LL-37 Is a Multifunctional Modulator of Innate Immune Responses
The Journal of Immunology, 2002
The role of LL-37, a human cationic antimicrobial peptide, in the immune system is not yet clearly understood. It is a widely expressed peptide that can be up-regulated during an immune response. In this report, we demonstrate that LL-37 is a potent antisepsis agent with the ability to inhibit macrophage stimulation by bacterial components such as LPS, lipoteichoic acid, and noncapped lipoarabinomannan. We also demonstrate that LL-37 protects mice against lethal endotoxemia. In addition to preventing macrophage activation by bacterial components, we hypothesized the LL-37 may also have direct effects on macrophage function. We therefore used gene expression profiling to identify macrophage functions that might be modulated by LL-37. These studies revealed that LL-37 directly up-regulates 29 genes and down-regulated another 20 genes. Among the genes predicted to be up-regulated by LL-37 were those encoding chemokines and chemokine receptors. Consistent with this, LL-37 up-regulated the expression of chemokines in macrophages and the mouse lung (monocyte chemoattractant protein 1), human A549 epithelial cells (IL-8), and whole human blood (monocyte chemoattractant protein 1 and IL-8), without stimulating the proinflammatory cytokine, TNF␣. LL-37 also up-regulated the chemokine receptors CXCR-4, CCR2, and IL-8RB. These findings indicate that LL-37 may contribute to the immune response by limiting the damage caused by bacterial products and by recruiting immune cells to the site of infection so that they can clear the infection.
The FASEB Journal, 2007
In humans, the antimicrobial peptide LL-37 and the potent chemotactic lipid leukotriene B4 (LTB4) are important mediators of innate immunity and host defense. Here we show that LTB4, at very low (1 nM) concentrations, strongly promotes release of LL-37 peptides from human neutrophils (PMNs) in a time- and dose-dependent manner, as determined by Western blot, enzyme-linked immunoassay (ELISA), and antibacterial activity. The LTB4-induced LL-37 release is mediated by the BLT1 receptor, and protein phosphatase-1 (PP-1) inhibits the release by suppressing the BLT1-mediated exocytosis of PMN granules. Conversely, LL-37 elicits translocation of 5-lipoxygenase (5-LO) from the cytosol to the perinuclear membrane in PMNs and promotes the synthesis and release of LTB4, particularly from cells primed with LPS or GM-CSF. Furthermore, LL-37 stimulates PMN phagocytosis of Escherichia coli particles, a functional response that is enhanced by LTB4, especially in GM-CSF pretreated cells. In these cells, LL-37 also enhances LTB4-induced phagocytosis. Hence, in human PMNs, positive feedback circuits exist between LL-37 and LTB4 that reciprocally stimulate the release of these mediators with the potential for synergistic bioactions and enhanced immune responses. Moreover, these novel lipid-peptide signaling pathways may offer new opportunities for pharmacological intervention and treatment of chronic inflammatory diseases.
Impact of LL-37 on anti-infective immunity
Journal of Leukocyte Biology, 2004
Host defense peptides (often called cationic antimicrobial peptides) have pleiotropic immunomodulatory functions. The human host defense peptide LL-37 is up-regulated at sites of infection and has little or no antimicrobial activity in tissue-culture media but under the same conditions, demonstrates immunomodulatory effects on epithelial cells, monocytes, and dendritic cells (DC). These effects include the induction of chemokine production in a mitogen-activated protein kinase-dependent manner in epithelial cell lines and monocytes and profound alterations of DC differentiation, resulting in the capacity to enhance a T helper cell type 1 response. Although the exact mechanisms of interaction between LL-37 and these cell types have not been elucidated, there is evidence for specific (i.e., receptor-mediated) and nonspecific interactions. The relative significance of the direct antimicrobial activities and immunomodulatory properties of LL-37 and other cationic host defense peptides in host defense remains unresolved. To demonstrate that antimicrobial activity was not necessarily required for protection in vivo, model peptides were synthesized and tested for antimicrobial and immunomodulatory activities. A peptide with no antimicrobial activity was found to be protective in animal models of Staphylococcus aureus and Salmonella infection, implying that a host defense peptide can protect by exerting immunomodulatory properties. J. Leukoc. Biol. 77: 451-459; 2005.