Undecidability of existential theories of rings and fields: a survey (original) (raw)

Abstract

The aim of this paper is to give an overview of results and problems connected with Hilbert's Tenth Problem for various rings and fields. The emphasis is on decision problems, similar to Hilbert's Tenth Problem, for rings and fields of algebraic and meromorphic functions.

Figures (2)

Sorry, this document isn't available for viewing at this time.

In the meantime, you can download the document by clicking the 'Download' button above.

References (207)

  1. A berth, The failure in computable analysis of a classical existence theorem for differential equations, Proc. Amer. Math. Soc. 30-1 (1971), 151.
  2. A. Adler, A reduction of homogeneous diophantine problems, J. London Math. Soc. 3 (1971), 446-448.
  3. M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277-291.
  4. M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Etudes Sci. Pub!. Math. 36 (1969), 23-58.
  5. J. Ax, On the undecidability of power series fields, Proc. Amer. Math. Soc. 16 (1966), 846.
  6. J. Ax, Solving diophantine equations modulo every prime, Ann. Math. 85 (1967), 161-183.
  7. J. Ax, The elementary theory of finite fields, Ann. Math. 88 (1968), 239-271.
  8. J_ Ax and S. Kochen, Diophantine problems over local fields: III Decidable fields, Ann. Math. 83 (1966), 437-456.
  9. J. Becker, J. Denef, L. Lipshitz, Jilurther remarks on the elementary theory of power series rings, Lect. Notes in Math. 834, Springer Verlag (1980).
  10. J. Becker, J. Denef and L. Lipshitz, The approximation property for some 5-dimensional henselian rings, Trans. Amer. Math. Soc. 276 (1983), 301-309.
  11. J. Becker, J. Denef, L. Lipshitz and L. van den Dries, Ultraproducts and approximation in local rings I, Invent. Math. 51 (1979), 189-203.
  12. J. Becker, W. Henson and L. Rubel, First-order conformal invariants, Ann. of Math. (2) 112 (1980), 123-178.
  13. J. Becker and L. Lipshitz, Remarks on the elementary theories of formal and convergent power series, Fund. Math. 105 (1980), 229-239.
  14. L. Belair, Substructures and uniform elimination for p-adic fields, Ann. Pure Appl. Logic 39 (1988), 1-17.
  15. L. Belair and J-L. Duret, Definissabilite dans les corps de fonctions p-adiques, J. Symbolic Logic 56 (1991), 783-785.
  16. L. Belair and J-L. Duret, Indecidabilite des corps de courbe reelle, J. Symbolic Logic 59-1 (1994), 87-91.
  17. A. Bel'tyukov, Decidability of the universal theory of the natural numbers with addition and divisibility, (Russian) Seminars of Steklov Math. Inst. (Leningrad) 60 (1976), 15-28.
  18. F. Beukers and Y.l. Manin, Diophantine Equations, preprint (1991).
  19. A. Bes, A survey of arithmetical definability, preprint (2000).
  20. J. Britton, Integer solutions of systems of quadratic equations, Math. Proc. Camb. Phil. Soc. 86 (1979), 385-389.
  21. V. Bruyere, G. Hansel, C. Michaux and R. Villemaire, Logic and p-recognizable sets of integers, Bull. Belgian Math. Soc. 1-2 (1994), 191-238
  22. K. Chandrasekharan, Elliptic functions, Grundlehren der mathematischen Wissenschaften 281, Springer-Verlag Berlin (1985).
  23. Chapuis, On the theory of free solvable groups, J. Pure Appl. Algebra 131 (1998), 13-24.
  24. G. Cherlin, Model theoretic Algebra, Lecture Notes Math. 521 (1976), Springer.
  25. G. Cherlin, Undecidability of rational function fields in nonzero characteristic, Logic Collo- quium '82, ed.: G.Lolli, North-Holland, (1984), 85-95.
  26. G. Cherlin, Definability in power series rings of nonzero characteristic, Models and Sets, Lect. Notes Math. 1103, Springer-Verlag (1984), 102-112.
  27. G. Cherlin, Rings of continuous functions: decision problems, Lect. Notes in Math. 834, Springer-Verlag (1980), 44-91.
  28. G. Cherlin, M. Jarden, Undecidability of some elementary theories over PAC fields, Ann. Pure Appl. Logic 30 (1986), 137-163.
  29. G. Cherlin and F. Point, On extensions of Presburger arithmetic, Proc. Fourth Easter conf. on model theory, Humboldt Univ. (1986), 17-34.
  30. P. Cohen, Decision procedures for real and p-adic fields, Comm. Pure Appl. Math. 22 (1969),131-151.
  31. G. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition, in Automata theory and formal languages (Second GI Conf., Kaiserslautern, 1975), pp. 134- 183. Lecture Notes in Comput. Sci. 33, Springer, Berlin, 1975.
  32. J.-L. Colliot-Thelene, A.N. Skorobogatov and P. Swinnerton-Dyer, Double fibers and double covers: paucity of rational points, Acta Arithm. 79 {1997, 113-135.
  33. G. Cornelissen, Stockage diophantien et hypothese de abc generalisee, C. R. Acad. Sci. Paris Ser. I Math. 328 (1999), 3-8.
  34. G. Cornelissen, Elliptic curves and rational Diophantine models of integer arithmetic, sub- mitted.
  35. G. Cornelissen and K. Zahidi, Topology of Diophantine sets: Remarks on Mazur's conjecture, this volume.
  36. L. Darniere, Decidability and Local-Global Principles, this volume.
  37. M. Davis, Hilbert's tenth problem is unsolvable, Amer. Math. Monthly 80 (1973), 233-269.
  38. M. Davis, Y. Matijasevic and J. Robinson, Hilbert's tenth problem. Diophantine equations: positive aspects of a negative solution, Proc. Sympos. Pure Math. 28 (1976), Amer. Math. Soc. 323-378.
  39. F. Delon, Indecidabilite de Ia theorie des anneaux de series formelles a plusieurs variables, Fund. Math. CXII (1981), 215-229.
  40. Licensed to Michigan St Univ. Prepared on Fri Jun 28 05:52:53 EDT 2013 for download from IP 35.8.11.2. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms
  41. F. Delon and Y. Rouani, Indecidabilite des corps de series formelles , J. Symbolic Logic 53 (1988), 1227-1234.
  42. J. Denef, Hilbert's tenth problem for quadratic rings, Proc. Amer. Math. Soc. 48 (1975), 214-220.
  43. J. Denef, Diophantine sets over Z{Tj, Proc. Amer. Math. Soc. 69 (1978), 148-150.
  44. J. Denef, The Diophantine Problem for polynomial rings and fields of rational functions, Trans. Amer. Math. Soc. 242 (1978), 391-399.
  45. J. Denef, Diophantine sets over algebraic integer rings II, Trans. Amer. Math. Soc. 257 (1980), 227-236.
  46. J. Denef, The diophantine problem for polynomial rings of positive characteristic, Logic Col- loquium 78, North Holland (1984), 131-145.
  47. J. Denef, p-adic semi-algebraic sets and cell decomposition, J. Reine Angew. Math. 369 (1986), 154-166.
  48. J. Denef and L. Lipshitz, Diophantine sets over some rings of algebraic integers, J. London Math. Soc. (2) 18 (1978), 385-391.
  49. J. Denef and L. Lipshitz, Ultraproducts and Approximation in local rings II, Math. Ann. 253 (1984)
  50. J. Denef and L. Lipshitz, Power series solutions of algebraic differential equations, Math. Ann. 267 (1980), 1-28.
  51. J. Denef and M. Gromov (communication by G. Cherlin), The ring of analytic functions in the disk has undecidable theory, 1985 (letter).
  52. J.Denef and L. van den Dries, p-adic and real subanalytic sets, Ann. Math. 128 (1988), 79-138.
  53. H. B. Enderton, A mathematical introduction to logic, Academic Press (1972).
  54. Y. Ersov, Undecidability of certain fields, Dokl. Akad. Nauk SSSR 161 (1965), 27-29.
  55. Y. Ersov, On the elementary theory of maximal normed fields, Dokl. Akad. Nauk SSSR 165 (1965), 1390-1393.
  56. M. Fried and G. Sacerdote, Solving diophantine problems over all residue class fields of a number field and all finite fields, Ann. Math. 104 (1976), 203-233.
  57. W. Fulton, Algebraic curves, Mathematics Lecture Notes Series (1976), W.A. Benjamin, Inc, Reading, MassaChusetts.
  58. M. Greenberg, Rational points in Henselian discrete valuation rings, Inst. Hautes Etudes Sci. Publ. Math. 31 (1966), 59-64.
  59. M. Greenberg, Lectures on forms in many variables, Mathematics Lecture Notes Series (1969), W.A. Benjamin Inc., Reading, Massachusetts.
  60. M. Greenberg, Strictly local solutions of diophantine equations, Pacific J. Math. 51 (1974), 143-153.
  61. F. Grunewald and D. Segal, The solubility of certain decision problems in arithmetic and algebra, Bull. Amer. Math. Soc. 1-6 (1979), 915-918.
  62. F. Grunewald and D. Segal, Some general algorithms I and II, Ann. Math. 112 (1980), 531- 617.
  63. F. Grunewald and D. Segal, How to solve a quadratic equation in integers, Math. Proc. Camb. Phil. Soc. 89 (1981), 1-5.
  64. C. Ward Henson and L. Rubel, Some applications of Nevanlinna Theory to mathematical logic: identities of exponential functions, Trans. Amer. Math. Soc. 282 (1984), 1-32 (also: corrections).
  65. T. Huuskonen, Constants are definable in fields of analytic functions, Proc. Amer. Math. Soc. 122 (1994), 697-702.
  66. H. Iss'sa, On the meromorphic function field of a Stein variety, Ann. of Math. 83 (1966), 34--46.
  67. C. U. Jensen, Theorie des modeles pour des anneaux de fonctions entieres et des corps de fonctions meromorphes, Mem. Soc. Math. France 16 (1984), 23 40.
  68. J. Jones, Diophantine representation of Mersenne and Fermat primes, Acta Arith. 35 (1979), 209-221.
  69. J. Jones, Undecidable diophantine equations, Bull. Amer. Math. Soc. 3 (1980), 859-862.
  70. J. Jones, Classification of quantifier prefixes over diophantine equations, Zeitschr. Math. Logik und Grundlagen d. Math. 27 (1981), 403-410.
  71. J. Jones andY. Matijasevic, A new representation for the symmertic binomial coefficient and its applications, Ann. Sc. Math. Quebec VI (1982), 81-97.
  72. J. Jones andY. Matijasevic, Register machine proof of the theorem on exponential diophantine representstion of enumerable sets, J. Symb. Logic 49 (1984), 818-829.
  73. J. Jones andY. Matijasevic, Proof of recursive unsolvability of Hilbert's Tenth Problem, Amer. Math. Monthly (1991), 689-709.
  74. J. Jones, D. Sato, H. Wada and D. Wiens, Diophantine representation of the set of prime numbers, Amer. Math. Monthly, (1976), 449-464.
  75. K. Kim and F. Roush, Problems equivalent to rational diophantine solvability, J. Algebra 124 {1989), 493-505.
  76. K. Kim and F. Roush, Quadratic forms over C[t1, t2], J. Algebra 140 (1991), 65-82.
  77. K. Kim and F. Roush, An approach to rational diophantine undecidability, Proc. Asian Math. Conf., World Scient. Press, Singapore (1992), 242-257.
  78. K. Kim and F. Roush, Diophantine undecidability of C(t1, t2), J. Algebra 150 {1992), 35-44.
  79. K. Kim and F. Roush, Diophantine unsolvability for function fields over certain infinite fields of characteristic p, J. Algebra 152 (1992), 230-239.
  80. K. Kim and F. Roush, Undecidability of parametric solutions of polynomial equations, Proc. Amer. Math. Soc. 118 {1993), 345-348.
  81. K. Kim and F. Roush, A decision procedure for certain abelian varieties over function fields, J. Algebra 163 {1994), 424-446.
  82. K. Kim and F. Roush, Diophantine unsolvability over p-adic function fields, J. Algebra 176 (1995), 83-110.
  83. S. Kochen, The model theory of local fields, Lecture Notes in Math. 499 (1975) (Proc. Internat. Summer Inst. and Logic Colloq., Kiel, 1974,), 384-425, Springer.
  84. M. Koppel, Some decidable diophantine problems: positive solution to a problem of Davis, Matijasevic and Robinson, Proc. Amer. Math. Soc. 77 (1979), 319.
  85. S. Krantz, Function theory of several complex variables, Pure and Applied Mathematics. A Wiley-Interscience Publication. John Wiley and Sons Inc., New York, (1982).
  86. S. Lang, Elliptic functions, Addison-Wesley, {1973).
  87. L. Lipshitz, Undecidable existential problems for addition and divisibility in algebraic number rings II, Proc. Amer. Math. Soc. 64 {1977), 122-128.
  88. L. Lipshitz, The diophantine problem for addition and divisibility, Trans. Amer. Math. Soc. 235 {1978), 271-283.
  89. L. Lipshitz, Undecidable existential problems for addition and divisibility in algebraic number rings, Trans. Amer. Math. Soc. 241 {1978), 121-128.
  90. L. Lipshitz, Some remarks on the diophantine problem for addition and divisibility, Bull. Soc. Math. Belgique 33 {1981), 41-52.
  91. L. Lipshitz, p-adic zeros of polynomials, J. reine angew. Math. 390 {1988), 208-214.
  92. L. Lipshitz and T. Pheidas, An analogue of Hilbert's Tenth Problem for p-adic entire func- tions, J. Symbolic Logic 60-4 {1995), 1301-1309
  93. A. Macintyre, On definable subsets of p-adic fields, J. Symb. Logic 41 (1976), 605-610.
  94. A. Macintyre, Rationality of p-adic Poincare series: uniformity in p, Ann. Pure Appl. Logic 49 (1990), 31-74.
  95. A. Macintyre, L. van den Dries, The logic of Rumely's local-global principle, J. reine angew. Math. 4 (1990), 33-56.
  96. A. Macintyre, D. Marker and L. van den Dries, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math. 140, 183-205.
  97. G. Makanin, The problem of solvability of equations in a free semigroup, Mat. Sbornik 103 {1977). English translation: Math. USSR Sbornik 32 (1977), 129-198.
  98. B. Malgrange, Sur les fonctions differentiables et les ensembles analytique, Bull. Soc. Math. France 91 (1963), 113-127.
  99. D. Marker, Model theory and exponentiation, Notices Amer. Math. Soc. 43 (1996), 753-759.
  100. R. Mason, Diophantine equations over function fields, London Math. Soc. Lecture Notes Ser. 91 (1984), Cambridge Univ. Press.
  101. Y. Matiyasevic, Enumerable sets are diophantine, Dkl. Akad. Nauk SSSR 191 (1970). English translation Soviet Math. Dokl.ll (1970), 354-358.
  102. Y. Matiyasevic, On recursive unsolvability of Hilbert's tenth problem, Proc. Fourth Inter. Congress Logic Method. Phil. Sci. Bucharest (1971), 89-110, North-Holland 1973. Licensed to Michigan St Univ. Prepared on Fri Jun 28 05:52:53 EDT 2013 for download from IP 35.8.11.2. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms
  103. Y. Matiyasevic and J. Robinson, Two universal three-quantifier representations of enu- merable sets, Teopiya algorifmov u matematiceskala logika, Vycislitel'nyi Centr. A.N. SSSR Moscow (1974) (volume dedicated to A.A. Markov), 112-123.
  104. Y. Matiyasevic, Arithmetical representations of enumerable sets with a small number of quantifiers Zap. Naucn Sem. Leningrad Otdel. Mat. Inst. Steklova 32 (1972), 77-84. English translation:J. Soviet Math. textbf6 (1976), 410-416.
  105. Y. Matiyasevic and J. Robinson, Reduction of an arbitrary diophantine equation to one in 13 unknowns, Acta Arith. 27 (1975), 521-533.
  106. B. Mazur, Number Theory as Gadfly, Amer. Math. Monthly 98 (1991), 593-611.
  107. B. Mazur, The topology of rational points, Experiment. Math. 1 (1992), 35-45.
  108. B. Mazur, Questions of decidability and undecidability in number theory, J. Symbolic Logic 59 (1994), 353-371.
  109. B. Mazur, Speculations about the topology of rational points: an update, in: Columbia Uni- versity Number Theory Seminar (New York, 1992), Asterisque 228, pp. 165-182, 1995.
  110. B. Mazur, Open problems regarding rational points on curves and varieties, in: Galois rep- resentations in arithmetic algebraic geometry (Durham, 1996), London Math. Soc. Lecture Note Ser. 254, pp. 239-265, Cambridge Univ. Press, Cambridge, 1998.
  111. C. Michaux and R. Villemaire, Open questions around Biichi and Presburger arithmetics, Logic: from foundations to applications (Staffordshire, 1993), 353-383, Oxford Sci. Publ. , Oxford Univ. Press, New York, 1996.
  112. C. Michaux and R. Villemaire, Presburger arithmetic and recognizability of sets of natural numbers by automata: new proofs of Cobham's and Semenov's theorems, Ann. Pure Appl. Logic 77 (1996), 251-277.
  113. C. Miller III, Some connections between Hilbert's 10th problem and the theory of groups, Word Problems (Boone, Cannonito, Lyndon eds.) North-Holland, 1973, 483-506.
  114. A. Nabutovsky, Isotopies and non-recursive functions in real algebraic geometry, Lecture Notes in Math. 1420 (1990), 194-205, Springer.
  115. A. Nabutovsky and S. Weinberger, Algorithmic unsolvability of the triviality problem for multidimensional knots, Comment. Math. Helv. 71 (1996), 426-434.
  116. A. Nabutovsky and S. Weinberger, Algorithmic aspects of homeomorphism problems, Cont. Math. 231 (1998), 245-250.
  117. A. Nerode, A decsion method for p-adic integral zeroes of Diophantine equations, Bull. Amer. Math. Soc. 69 (1963), 513-517.
  118. J. Pas, Uniform p-adic cell decomposition and local zeta functions, J. Reine Angew. Math. 399 (1989), 137-172.
  119. Y. Penzin, The undecidability of fields of rational functions over fields of characteristic 2, Algebra i Logica 12 (1973), 205-210.
  120. A. Pfister, Quadratic forms with applications to Algebraic Geometry and Topology, Lond. Math. Soc. Lecture Note Ser. 217 (1995), Cambridge Univ. Press.
  121. T. Pheidas, The diophantine problem for addition and divisibility in polynomial rings, Thesis, Purdue Univ. (1985).
  122. T. Pheidas, An undecidability result for power series rings of positive characteristic, Proc. Amer. Math. Soc. 99 (1987), 364-366.
  123. T. Pheidas, An undecidability result for power series rings of positive characteristic. II, Proc. Amer. Math. Soc. 100 (1987), 526-530.
  124. T. Pheidas, Hilbert's Tenth Problem for a class of rings of algebraic integers, Proc. Amer. Math. Soc. 104 (1988), 611-620.
  125. T. Pheidas, Hilbert's Tenth Problem for fields of rational functions over finite fields, Invent. Math. 103 (1991), 1-8.
  126. T. Pheidas, Extensions of Hilbert's Tenth Problem, J. Symbolic Logic 54 (1994), 372-397.
  127. T. Pheidas, The diophantine theory of a ring of analytic functions, J. Reine Angew. Math. 463 (1995), 153-167.
  128. T. Pheidas, An effort to prove that the existential theory of Q is undecidable., this volume.
  129. T. Pheidas and K. Zahidi, Existential theories of polynomial rings and function fields, Comm. Algebra 27 (1999), 4993-5010.
  130. D. Pierce, Interpretation of (Z, +, .) in C(t1, tz), preprint.
  131. A. Pillay, Model theory and Diophantine geometry, Bull. Amer. Math. Soc. 34 (1997), 405- 422.
  132. F. Point and M. Prest, Decidability for theories of modules, J. London Math. Soc. (2) 38 (1988), 193-206.
  133. F. Point, Decidability questions for theories of modules, Logic Colloquium '90 (Helsinki, 1990), 266-280, Lecture Notes Logic 2, Springer, 1993.
  134. Y. Pourchet, Sur la representation en somme de carres des polynomes a une indeterminee sur un corps de nombes algebriques, Acta Arith. XIX (1971), 89-104.
  135. M. Pour-El and I. Richards, A computable ordinary differential equation which possesses no computable solution, Ann. Math. Logic 17 (1979), 61-90.
  136. A. Prestel, Decidable theories of preordered fields, Math. Ann. 258 (1982), 481-492.
  137. A. Prestel and J. Schmid, Existentially closed domains with rodical relations: an axiomati- zation of the ring of algebroic integers, J. Reine Angew. Math. 407 (1990), 178-201.
  138. A. Prestel and J. Schmid, Decidability of the rings of real algebroic and p-adic algebroic integers, J. Reine Angew. Math. 414 (1991), 141-148.
  139. M. Prunescu, A structurol approach to Diophantine definability, Konstanzer Dissertationen 564 (1998), Hartung-Gorre Verlag, Konstanz.
  140. M. Prunescu, Defining constant polynomials, this volume.
  141. M. Rabin, Computable algebro, general theory and theory of computable fields, Trans. Amer. Math. Soc. 95 (1960), 341-360.
  142. D. Richard, The arithmetics as theories of two orders, North-Holland Math. Stud. 99 (1984), 287-311, North-Holland, Amsterdam-New York.
  143. D. Richard, All arithmetical sets of powers of primes are first-order definable in terms of the successor function and the coprimeness predicare, Discrete Math. 53 (1985), 221-247.
  144. D. Richard, Answer to a problem roised by ].Robinson: The arithmetic of positive or negative integers is definable from succesor and divisibility, J. Symbolic Logic 50 (1985), 927-935.
  145. D. Richard, Definissabilite de l'arithmetique par coprimarite et restrictions de !'addition ou de la multiplication, C. R. Acad. Sci. Paris Ser. I Math. 305 (1987), 665-668.
  146. D. Richardson, Some undecidable problems involving elementary functions of a real variable, J. Symbolic Logic 233 (1968), 514-520.
  147. D. Richardson, The simple exponential constant problem, Zeitschr. Math. Logik und Grund- lagen d. Math. 17 (1971), 133-136.
  148. J. Robinson, Definability and decision problems in arithmetic, Journ. Symb. Logic 14 (1949), 98-114.
  149. J. Robinson, Existential definability in arithmetic, Trans. Amer. Math. Soc. 72 (1952), 437- 449.
  150. J. Robinson, The undecidability of algebroic rings and fields, Proc. Amer. Math. Soc. 10 (1959), 950-957.
  151. J. Robinson, On the decision problem for algebroic rings Studies in mathematical analysis and related topics (1962), 297-304, Stanford Univ. Press, Stanford.
  152. J. Robinson, Hilbert's tenth problem, Proc. Symposia Pure Math. 20 (1971), 191-194.
  153. R. Robinson, Undecidable rings , Trans. Amer. Math. Soc. 70 (1951), 137.
  154. R. Robinson, The undecidability of pure tronscendental extensions of real fields, Zeitschr. Math. Logik und Grundlagen Math. 10 (1964), 275-282.
  155. Y. Rouani, lndecidabilite dans un langage enrichi de corps de series formelles en carocter- istique positive, Ph.D Thesis Univ. de Paris VII (1986).
  156. L. Rubel, An essay on diophantine equations for analytic functions, Exp. Math. 13 (1995), 81-92.
  157. R. Rumely, Undecidability and definability for the theory of global fields, Trans. Amer. Math. Soc. 262 (1980), 195-217.
  158. R. Rumely, Arithmetic over the ring of all algebraic integers, Journ. Reine und Angew. Math. 368 (1986), 127-133.
  159. W. Sharlau, Quadrotic and Hermitian forms, Grundlehren der mathematischen Wis- senschaften 270, Springer-Verlag, 1985.
  160. J. Schmid, Existentially closed fields with holomorphy rings, Archive for Mathematical Logic 36 (1997), 127-135.
  161. A. Seidenberg, A new decision method for elementary algebra, Annals of Mathematics 60 (1954), 365-374.
  162. A. Semenov, Logical theories of one-place functions on the set of naturol numbers, Math. USSR Izvestija 22 (1984), 587-618.
  163. Licensed to Michigan St Univ. Prepared on Fri Jun 28 05:52:53 EDT 2013 for download from IP 35.8.11.2. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms
  164. A. Semenov, On the definability of arithmetic in its fragments, Soviet Math. Dokl. 25 (1982), 300-303.
  165. H. N. Shapiro and A. Shlapentokh, Diophantine relationships between algebraic number fields, Comm. Pure Appl. Math XLII (1989), 1113-1122.
  166. A. Shlapentokh, Extension of Hilbert's tenth problem to some algebraic number fields, Comm. Pure Appl. Math. XLII (1989), 939-962.
  167. A. Shlapentokh, Diophantine definitions for some polynomial rings, Comm. Pure Appl. Math. 43 (1990), 1055-1066.
  168. A. Shlapentokh, Hilbert's Tenth Problem for rings of algebraic functions of characteristic 0, J. Number Theory 40 (1992), 218-236.
  169. A. Shlapentokh, A diophantine definition of rational integers over some rings of algebraic numbers, Notre Dame J. Formal Logic 33 (1992), 299-321.
  170. A. Shlapentokh, Hilbert's Tenth Problem for rings of algebraic functions in one variable over fields of constants of positive characteristic, Trans. Amer. Math. Soc. 333 (1992), 275-298.
  171. A. Shlapentokh, Diophantine relations between rings of S-integers of fields of algebraic func- tions in one variable over constant fields of positive characteristic, J. Symbolic Logic 58 (1993), 158-192.
  172. A. Shlapentokh, Diophantine undecidability in some rings of algebmic numbers of totally real infinite extensions of Q, Ann. Pure Appl. Logic 68 (1994), 299-325.
  173. A. Shlapentokh, Diophantine classes of holomorphy rings of global fields, J. Algebra 169 (1994), 139-175.
  174. A. Shlapentokh, Diophantine equivalence and countable rings, J. Symbolic Logic 59 (1994), 1068-1095.
  175. A. Shlapentokh, Non-standard extensions of weak presentations, J. Algebra 176 (1995), 735-749.
  176. A. Shlapentokh, Diophantine undecidability over algebraic function fields over finite fields of constants, J. Number Theory 58 (1996), 317-342.
  177. A. Shlapentokh, .Hilbert's Tenth Problem for algebraic function fields over infinite fields of constants of positive characteristic, pre print ( 1997).
  178. A. Shlapentokh1 Diophantine definability over some rings of algebraic numbers with infinite number of primes allowed in the denominator, Invent. Math. 129 (1997), 489-507.
  179. A. Shlapentokh, Defining integrality at prime sets of high density •in number fields, Duke Math. J. 101 (2000), 117-134.
  180. J. Silverman, The arithmetic of elliptic curves, Grad. Texts Math. 14, Springer Verlag (1985).
  181. T. Skolem, Diophantische Gleichungen, Grundlehren der mathematischen Wissenschaften 5 (1938), Springer.
  182. T. Skolem, Uber einige Satzfunctionen in der Arithmetik, Skrif. Vid. akad. Oslo 7 (1931), 1-28.
  183. M. Spivakovski, A new proof of D. Popescu's theorem on smoothing of ring homomorphisms, J. Amer. Math. Soc. 12, 381-444.
  184. N. Sundaram, Hilbert's 10th Problem, preprint (1999).
  185. A. Tarski, A decision method for elementary algebra and geometry, RAND Corporation, Santa Monica, Calif. (1948).
  186. V. Terrier, Decidability of the existential theory of the set of natural numbers with order, divisibility, power functions, power predicates and constants, Proc. Amer. Math. Soc. 114 (1992), 809-816.
  187. L. van den Dries, A specialization theorem for analytic functions on compact sets, Nederl. Akad. Wetensch. Indag. Math. 44 (1982), 391-396.
  188. L. van den Dries, A generalization of the Tarski-Seidenberg theorem, and some nondefin- ability results, Bull. Amer. Math. Soc. 15 (1986), 189-193.
  189. L. van den Dries, Alfred Tarski's elimination theory for real closed fields, J. Symbolic Logic 53 (1988), 7-19.
  190. L. van den Dries, Elimination theory for the ring of algebraic integers, J. Reine Angew. Math. 388 (1988), 189-205.
  191. L. van den Dries, On the elementary theory of restricted elementary functions, J. Symbolic Logic 53 (1988), 796-808.
  192. L. van den Dries, A remark on Ax's theorem on solvability modulo primes, Math. Z. 208 (1991), 65-70.
  193. L. van den Dries, Analytic Ax-Kochen-Ersov theorems, Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989), 379-398, Contemp. Math. 131, Amer. Math. Soc., Providence, Rl, 1992.
  194. L. van den Dries, A remark on elimination of imaginaries, preprint, seminar, March 1997
  195. L. van den Dries and A. Macintyre, The logic of Rumely's local-global principle, J. Reine Angew. Math. 4 (1990), 1-24.
  196. C. Videla, Hilbert's tenth problem for mtional function fields in chamcteristic 2, Proc. Amer. Math. Soc. 120 (1994), 249-253.
  197. C. Videla, On the constructible numbers, Proc. Amer. Math. Soc. 127 (1999), 851-860.
  198. J. Voloch, Diophantine geometry in chamcteristic p: a survey, http:/ jwww.ma.utexas.edu/usersjvoloch/surveylatex/surveylatex.html (1996)
  199. M. Vsemirnov, The Woods-Erdos conjecture for polynomial ring, to appear in Ann. Pure Appl. Logic.
  200. V. Weispfenning, Quantifier elimination and decision procedures for valued fields in Models and Sets, Lect. Notes Math. 1103, Springer-Verlag (1984), 419-472.
  201. A. Wilkie, Schanuel's conjecture and the decidability of the real exponential field, Algebraic model theory (Toronto, ON, 1996), 223-230, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 496, Kluwer Acad. Pub!., Dordrecht, 1997.
  202. K. Zahidi, Existential undecidability for rings of algebmic functions, Ph.D thesis University of Ghent (1999).
  203. K. Zahidi, On Diophantine sets over polynomial rings, Proc. Amer. Math. Soc. 128 (2000), 877-884.
  204. K. Zahidi, The existential theory of real hyperelliptic function fields, to appear in J. Algebra.
  205. K. Zahidi, On the number of mtional points of a variety, in preparation.
  206. M. Ziegler, Model theory of modules , Ann. Pure Appl. Logic 26 (1984), 149-213.
  207. S. Zhi-Wei, Reduction of unknowns in diophantine representations, Sci. China Ser. A 35 (1992), 257-269.