Mechanism of phosphorylation-recognition by visual arrestin and the transition of arrestin into a high affinity binding state (original) (raw)
Related papers
Journal of Biological Chemistry, 1998
Arrestin plays an important role in quenching phototransduction via its ability to bind to the phosphorylated light-activated form of the visual receptor rhodopsin (P-Rh*). Remarkable selectivity of visual arrestin toward this functional form is determined by an elegant sequential multisite binding mechanism. Previous structure-function studies have suggested that the COOH-terminal region of arrestin (residues 356-404) is not directly involved in rhodopsin interaction, but instead plays a regulatory role. This region supports basal arrestin conformation and ensures arrestin's transition into a high affinity rhodopsin-binding state upon an encounter with P-Rh*. Overall, our results corroborate this hypothesis and identify three functional subregions (residues 361-368, 369-378, and 379-404) and individual amino acids involved in the control of arrestin stability and binding selectivity. Two of the most potent mutants, arrestin(1-378) and arrestin(F375A,V376A,F377A) belong to a novel class of constitutively active arrestins with high affinity for P-Rh*, dark P-Rh, and Rh* (but not dark Rh), in contrast to earlier constructed mutants arrestin(R175E) and arrestin(⌬2-16) with high affinity for light-activated forms only. The implications of these findings for the mechanism of arrestin-rhodopsin interaction are discussed in light of the recently determined crystal structure of arrestin.
Journal of Biological Chemistry, 1997
Quenching of phototransduction in retinal rod cells involves phosphorylation of photoactivated rhodopsin by the enzyme rhodopsin kinase followed by binding of the protein arrestin. Although it has been proposed that the mechanism of arrestin quenching of visual transduction is via steric exclusion of transducin binding to phosphorylated light-activated rhodopsin (P-Rh * ), direct evidence for this mechanism is lacking. In this study, we investigated both the role of rhodopsin phosphorylation in modulating its interaction with arrestin and transducin and the proposed binding competition between arrestin and transducin for P-Rh * . While the -adrenergic receptor kinase promotes significant arrestin binding to rhodopsin at a phosphorylation stoichiometry of 2 mol/mol, rhodopsin kinase promotes arrestin binding at a stoichiometry of ϳ0.9 mol/mol. Moreover, while -adrenergic receptor kinase phosphorylation of rhodopsin only modestly decreases transducin binding and activation, rhodopsin kinase phosphorylation of rhodopsin significantly decreases transducin binding and activation. Finally, arrestin competes effectively with transducin for binding to P-Rh * (50% inhibition at ϳ1:1 molar ratio of arrestin:transducin) but has no effect on transducin binding to nonphosphorylated light-activated rhodopsin (Rh * ), paralleling the functional inhibition by arrestin on P-Rh * -stimulated transducin activation (50% inhibition at ϳ1.7:1 molar ratio of arrestin:transducin). These results demonstrate that a major role of rhodopsin phosphorylation is to promote high-affinity arrestin binding and decrease transducin binding thus allowing arrestin to effectively compete with transducin for binding to photoactivated rhodopsin.
Functional Role of Arrestin-1 Residues Interacting With Unphosphorylated Rhodopsin Elements
Arrestin-1, or visual arrestin, exhibits an exquisite selectivity for light-activated phosphorylated rhodopsin (P-Rh*) over its other functional forms. That selectivity is believed to be mediated by two well-established structural elements in the arrestin-1 molecule, the activation sensor detecting the active conformation of rhodopsin and the phosphorylation sensor responsive to the rhodopsin phosphorylation, which only active phosphorylated rhodopsin can engage simultaneously. However, in the crystal structure of the arrestin-1-rhodopsin complex there are arrestin-1 residues located close to rhodopsin, which do not belong to either sensor. Here we tested by site-directed mutagenesis the functional role of these residues in wild type arrestin-1 using direct binding assay to P-Rh* and light-activated unphosphorylated rhodopsin (Rh*). We found that many mutations either enhanced the binding only to Rh* or increased the binding to Rh* much more than to P-Rh*. The data suggest that the ...
Regulation of Arrestin Binding by Rhodopsin Phosphorylation Level
Journal of Biological Chemistry, 2007
Arrestins ensure the timely termination of receptor signaling. The role of rhodopsin phosphorylation in visual arrestin binding was established more than 20 years ago, but the effects of the number of receptor-attached phosphates on this interaction remain controversial. Here we use purified rhodopsin fractions with carefully quantified content of individual phosphorylated rhodopsin species to elucidate the impact of phosphorylation level on arrestin interaction with three biologically relevant functional forms of rhodopsin: light-activated and dark phosphorhodopsin and phospho-opsin. We found that a single receptor-attached phosphate does not facilitate arrestin binding, two are necessary to induce high affinity interaction, and three phosphates fully activate arrestin. Higher phosphorylation levels do not increase the stability of arrestin complex with light-activated rhodopsin but enhance its binding to the dark phosphorhodopsin and phospho-opsin. The complex of arrestin with hyperphosphorylated light-activated rhodopsin is less sensitive to high salt and appears to release retinal faster. These data suggest that arrestin likely quenches rhodopsin signaling after the third phosphate is added by rhodopsin kinase. The complex of arrestin with heavily phosphorylated rhodopsin, which appears to form in certain disease states, has distinct characteristics that may contribute to the phenotype of these visual disorders.
FEBS Letters, 1995
A synthetic heptaphosphopeptide comprising the fully pbosphorylated carboxyl terminal pbosphorylation region of bovine rbodopsin, residues 330-348, was found to induce a conformational change in bovine arrestin. This caused an alteration of the pattern of limited proteolysis of arrestin similar to that induced by binding pbospborylated rbodopsin or heparin. Unlike heparin, the phosphopeptide also induced light-activated binding of arrestin to both unphospborylated rhodopsin in disk membranes as well as to endoproteinase Asp-N-treated rbodopsin (des 330-348). These findings suggest that one function of phosphorylation of rhodopsin is to activate arrestin which can then bind to other regions of the surface of the photoactivated rhodopsin.
Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin
Proceedings of the National Academy of Sciences, 2013
Solution NMR spectroscopy of labeled arrestin-1 was used to explore its interactions with dark-state phosphorylated rhodopsin (P-Rh), phosphorylated opsin (P-opsin), unphosphorylated light-activated rhodopsin (Rh*), and phosphorylated light-activated rhodopsin (P-Rh*). Distinct sets of arrestin-1 elements were seen to be engaged by Rh* and inactive P-Rh, which induced conformational changes that differed from those triggered by binding of P-Rh*. Although arrestin-1 affinity for Rh* was seen to be low (K D > 150 μM), its affinity for P-Rh (K D ∼80 μM) was comparable to the concentration of active monomeric arrestin-1 in the outer segment, suggesting that P-Rh generated by high-gain phosphorylation is occupied by arrestin-1 under physiological conditions and will not signal upon photo-activation. Arrestin-1 was seen to bind P-Rh* and P-opsin with fairly high affinity (K D of ∼50 and 800 nM, respectively), implying that arrestin-1 dissociation is triggered only upon P-opsin regeneration with 11-cis-retinal, precluding noise generated by opsin activity. Based on their observed affinity for arrestin-1, P-opsin and inactive P-Rh very likely affect the physiological monomer-dimer-tetramer equilibrium of arrestin-1, and should therefore be taken into account when modeling photoreceptor function. The data also suggested that complex formation with either P-Rh* or P-opsin results in a global transition in the conformation of arrestin-1, possibly to a dynamic molten globule-like structure. We hypothesize that this transition contributes to the mechanism that triggers preferential interactions of several signaling proteins with receptor-activated arrestins.
Journal of Biological Chemistry, 2012
The relative contribution of phosphates and active GPCR conformation is unknown. Results: Using WT and mutant arrestins and receptors, we show that phosphates are critical for arrestin binding to some GPCRs but not to others. Conclusion: The role of receptor-attached phosphates in arrestin binding varies widely depending on the arrestin-receptor combination. Significance: Distinct molecular mechanisms mediate arrestin recruitment to different GPCRs.
Frontiers in Molecular Neuroscience
We determined the effects of different expression levels of arrestin-1-3A mutant with enhanced binding to light-activated rhodopsin that is independent of phosphorylation. To this end, transgenic mice that express mutant rhodopsin with zero, one, or two phosphorylation sites, instead of six in the WT mouse rhodopsin, and normal complement of WT arrestin-1, were bred with mice expressing enhanced phosphorylation-independent arrestin-1-3A mutant. The resulting lines were characterized by retinal histology (thickness of the outer nuclear layer, reflecting the number of rod photoreceptors, and the length of the outer segments, which reflects rod health), as well as single-and double-flash ERG to determine the functionality of rods and the rate of photoresponse recovery. The effect of co-expression of enhanced arrestin-1-3A mutant with WT arrestin-1 in these lines depended on its level: higher (240% of WT) expression reduced the thickness of ONL and the length of OS, whereas lower (50% of WT) expression was harmless in the retinas expressing rhodopsin with zero or one phosphorylation site, and improved photoreceptor morphology in animals expressing rhodopsin with two phosphorylation sites. Neither expression level increased the amplitude of the a-and b-wave of the photoresponse in any of the lines. However, high expression of enhanced arrestin-1-3A mutant facilitated photoresponse recovery 2-3-fold, whereas lower level was ineffective. Thus, in the presence of normal complement of WT arrestin-1 only supra-physiological expression of enhanced mutant is sufficient to compensate for the defects of rhodopsin phosphorylation.
Functional map of arrestin binding to phosphorylated opsin, with and without agonist
Scientific Reports, 2016
Arrestins desensitize G protein-coupled receptors (GPCRs) and act as mediators of signalling. Here we investigated the interactions of arrestin-1 with two functionally distinct forms of the dim-light photoreceptor rhodopsin. Using unbiased scanning mutagenesis we probed the individual contribution of each arrestin residue to the interaction with the phosphorylated apo-receptor (Ops-P) and the agonist-bound form (Meta II-P). Disruption of the polar core or displacement of the C-tail strengthened binding to both receptor forms. In contrast, mutations of phosphate-binding residues (phosphosensors) suggest the phosphorylated receptor C-terminus binds arrestin differently for Meta II-P and Ops-P. Likewise, mutations within the inter-domain interface, variations in the receptor-binding loops and the C-edge of arrestin reveal different binding modes. In summary, our results indicate that arrestin-1 binding to Meta II-P and Ops-P is similarly dependent on arrestin activation, although the c...
Molecular vision, 2006
The purpose of our study was to determine whether arrestin residues previously predicted by computational modeling to interact with an aspartic acid substituted rhodopsin tail are actually involved in interactions with phospho-residues on the rhodopsin cytoplasmic tail. We generated arrestin mutants with altered charges at predicted positions. These mutants were then tested for the ability to inhibit rhodopsin using both direct binding assays, as well as functional assays involving transducin inhibition assays. Our results demonstrate that the computer-predicted residues are indeed involved in both the ability of the low-affinity state of arrestin to bind to rhodopsin as well as the ability of arrestin to be induced into a higher-affinity state in a phospho-residue-dependent manner. Our results also suggest that positions K14, K15, R29, H301, and K300 on arrestin interact with the phosphorylated carboxyl tail of rhodopsin and that this translates to the efficient activation of arres...