Selection and Accumulation of an HIV-1 Escape Mutant by Three Types of HIV-1-Specific Cytotoxic T Lymphocytes Recognizing Wild-Type and/or Escape Mutant Epitopes (original) (raw)

Escape mutation selected by Gag28-36-specific cytotoxic T cells in HLA-A*2402-positive HIV-1-infected donors

Microbes and Infection, 2009

Gag-specific CTLs are known to have stronger ability to control HIV-1 replication than others that are protein-specific. Therefore, the analysis of Gag escape mutants is expected to clarify the mechanisms of immune control in HIV-1-infected donors. However, only a limited number of Gag escape mutants have been identified so far. A previous study suggested the possibility that Gag28-3R (KW9-3R) is an escape mutant from HLA-A*2402-restricted KW9-specific CTLs but did not show any evidence of it. Here we sought to demonstrate that KW9-3R is selected as escape mutant by KW9-specific CTLs. KW9-specific CTLs showed a remarkable reduction in recognition of target cells infected with the KW9-3R mutant. The sequence analysis of HIV-1 from 58 HIV-1-infected individuals showed that the frequency of the KW9-3R mutant was significantly higher in HLA-A*2402 þ individuals than in HLA-A*2402 À individuals. Longitudinal analysis of an HLA-A*2402 þ individual with HIV-1 early infection showed that this escape mutant was selected over an approximately 2-year period. These results together indicate that Gag28-3R is an escape mutant selected by HLA-A*2402-restricted KW9-specific CTLs. Further analysis of this epitope will clarify the role of HIV-1-specific CTLs in the control of HIV-1 among the Japanese population, since 70% of them carry this allele.

Different Abilities of Escape Mutant-Specific Cytotoxic T Cells To Suppress Replication of Escape Mutant and Wild-Type Human Immunodeficiency Virus Type 1 in New Hosts

Journal of Virology, 2008

There is much evidence that in human immunodeficiency virus type 1 (HIV-1)-infected individuals, strong cytotoxic T lymphocyte (CTL)-mediated immune pressure results in the selection of HIV-1 mutants that have escaped from wild-type-specific CTLs. If escape mutant-specific CTLs are not elicited in new hosts sharing donor HLA molecules, the transmission of these mutants results in the accumulation of escape mutants in the population. However, whether escape mutant-specific CTLs are definitively not elicited in new hosts sharing donor HLA molecules still remains unclear. A previous study showed that a Y-to-F substitution at the second position (2F) of the Nef138-10 epitope is significantly detected in HLA-A*2402 ؉ hemophilic donors. Presently, we confirmed that this 2F mutant was an escape mutant by demonstrating strong and weak abilities of Nef138-10-specific CTL clones to suppress replication of the wild-type and 2F mutant viruses, respectively. We demonstrated the existence of the 2F-specific CTLs in three new hosts who had been primarily infected with the 2F mutant. The 2F-specific CTL clones suppressed the replication of both wild-type and mutant viruses. However, the abilities of these clones to suppress replication of the 2F virus were much weaker than those of wild-type-specific and the 2F-specific ones to suppress replication of the wild-type virus. These findings indicate that the 2F mutant is conserved in HIV-1-infected donors having HLA-A*2402, because the 2F-specific CTLs failed to completely suppress the 2F mutant replication and effectively prevented viral reversion in new hosts carrying HLA-A*2402.

Escape from the Dominant HLA-B27-Restricted Cytotoxic T-Lymphocyte Response in Gag Is Associated with a Dramatic Reduction in Human Immunodeficiency Virus Type 1 Replication

Journal of Virology, 2007

Human leukocyte antigen (HLA)-B27-positive subjects are uncommon in their ability to control infection with human immunodeficiency virus type 1 (HIV-1). However, late viral escape from a narrowly directed immunodominant Gag-specific CD8 ؉ T-lymphocyte (CTL) response has been linked to AIDS progression in these individuals. Identifying the mechanism of the immune-mediated control may provide critical insights into HIV-1 vaccine development. Here, we illustrate that the CTL escape mutation R 264 K in the HLA-B27-restricted KK10 epitope in the capsid resulted in a significant defect in viral replication in vitro. The R 264 K variant was impaired in generating late reverse transcription products, indicating that replication was blocked at a postentry step. Notably, the R 264 K mutation was associated in vivo with the development of a rare secondary mutation, S 173 A, which restored viral replication in vitro. Furthermore, infectivity of the R 264 K variant was rescued by the addition of cyclosporine A or infection of a cyclophilin A-deficient cell line. These data demonstrate a severe functional defect imposed by the R 264 K mutation during an early step in viral replication that is likely due to the inability of this variant to replicate efficiently in the presence of normal levels of cyclophilin A. We conclude that the impact of the R 264 K substitution on capsid structure constrains viral escape and enables long-term maintenance of the dominant CTL response against B27-KK10, providing an explanation for the protective effect of HLA-B27 during HIV infection.

Different In Vivo Effects of HIV-1 Immunodominant Epitope-Specific Cytotoxic T Lymphocytes on Selection of Escape Mutant Viruses

Journal of Virology, 2010

HIV-1 escape mutants are well known to be selected by immune pressure via HIV-1-specific cytotoxic T lymphocytes (CTLs) and neutralizing antibodies. The ability of the CTLs to suppress HIV-1 replication is assumed to be associated with the selection of escape mutants from the CTLs. Therefore, we first investigated the correlation between the ability of HLA-A*1101-restricted CTLs recognizing immunodominant epitopes in vitro and the selection of escape mutants. The result showed that there was no correlation between the ability of these CTLs to suppress HIV-1 replication in vitro and the appearance of escape mutants. The CTLs that had a strong ability to suppress HIV-1 replication in vitro but failed to select escape mutants expressed a higher level of PD-1 in vivo, whereas those that had a strong ability to suppress HIV-1 replication in vitro and selected escape mutants expressed a low level of PD-1. Ex vivo analysis of these CTLs revealed that the latter CTLs had a significantly stronger ability to recognize the epitope than the former ones. These results suggest that escape mutations are selected by HIV-1-specific CTLs that have a stronger ability to recognize HIV-1 in vivo but not in vitro.

The flexibility of the TCR allows recognition of a large set of naturally occurring epitope variants by HIV-specific cytotoxic T lymphocytes

International Immunology, 2001

Pathogens attempt to evade immune recognition by expressing mutated antigens. The present study shows that two mechanisms happen in vivo during the course of HIV infection to limit the escape of antigenic variants from cytotoxic T lymphocyte (CTL) recognition: recognition of several epitope variants by the same TCR and generation of several CTL populations specific for a single epitope but recognizing different variant sequences. We have studied two CTL populations directed towards the HIV-p24 gag amino acids 176-184 QASQEVKNW epitope, presented by HLA-B5301. Both CTL populations were derived from a long-term asymptomatic HIV-infected child and they express different TCR. Each of the two CTL recognizes five of the 10 naturally occurring variants. These variants are distinct for both CTL and thus a total of eight variants are recognized. Thus, polyclonality of CTL specific for the same epitope but differing in variant sequences recognized may improve the control of variant viruses' replication in vivo. In addition to cross-recognition of several variant epitopes, promiscuous recognition of exogenous peptides complexed to allogeneic HLA-B molecules occurs, showing that the TCR can tolerate amino acid changes on both the peptide and the MHC molecule. This flexibility of the TCR is probably of great importance for control of viruses with high genetic variability, such as HIV.