Single-stranded DNA-binding Protein in Vitro Eliminates the Orientation-dependent Impediment to Polymerase Passage on CAG/CTG Repeats (original) (raw)
Journal of Biological Chemistry, 2008
Abstract
Small insertions and deletions of trinucleotide repeats (TNRs) can occur by polymerase slippage and hairpin formation on either template or newly synthesized strands during replication. Although not predicted by a slippage model, deletions occur preferentially when 5'-CTG is in the lagging strand template and are highly favored over insertion events in rapidly replicating cells. The mechanism for the deletion bias and the orientation dependence of TNR instability is poorly understood. We report here that there is an orientation-dependent impediment to polymerase progression on 5'-CAG and 5'-CTG repeats that can be relieved by the binding of single-stranded DNA-binding protein. The block depends on the primary sequence of the TNR but does not correlate with the thermodynamic stability of hairpins. The orientation-dependent block of polymerase passage is the strongest when 5'-CAG is the template. We propose a "template-push" model in which the slow speed of DNA polymerase across the 5'-CAG leading strand template creates a threat to helicase-polymerase coupling. To prevent uncoupling, the TNR template is pushed out and by-passed. Hairpins do not cause the block, but appear to occur as a consequence of polymerase pass-over.
G. Goellner hasn't uploaded this paper.
Let G. know you want this paper to be uploaded.
Ask for this paper to be uploaded.