Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans (original) (raw)

A novel structure of DNA repair protein RecO from Deinococcus radiodurans

Recovery of arrested replication requires coordinated action of DNA repair, replication, and recombination machineries. Bacterial RecO protein is a member of RecF recombination repair pathway important for replication recovery. RecO possesses two distinct activities in vitro, closely resembling those of eukaryotic protein Rad52: DNA annealing and RecA-mediated DNA recombination. Here we present the crystal structure of the RecO protein from the extremely radiation resistant bacteria Deinococcus radiodurans (DrRecO) and characterize its DNA binding and strand annealing properties. The RecO structure is totally different from the Rad52 structure. DrRecO is comprised of three structural domains: an N-terminal domain which adopts an OB-fold, a novel alpha-helical domain, and an unusual zinc-binding domain. Sequence alignments suggest that the multidomain architecture is conserved between RecO proteins from other bacterial species and is suitable to elucidate sites of protein-protein and DNA-protein interactions necessary for RecO functions during the replication recovery and DNA repair.

RecA protein assures fidelity of DNA repair and genome stability in Deinococcus radiodurans

DNA Repair, 2010

Deinococcus radiodurans is one of the most radiation-resistant organisms known. It can repair hundreds of radiation-induced double-strand DNA breaks without loss of viability. Genome reassembly in heavily irradiated D. radiodurans is considered to be an error-free process since no genome rearrangements were detected after post-irradiation repair. Here, we describe for the first time conditions that frequently cause erroneous chromosomal assemblies. Gross chromosomal rearrangements have been detected in recA mutant cells that survived exposure to 5 kGy ␥-radiation. The recA mutants are prone also to spontaneous DNA rearrangements during normal exponential growth. Some insertion sequences have been identified as dispersed genomic homology blocks that can mediate DNA rearrangements. Whereas the wild-type D. radiodurans appears to repair accurately its genome shattered by 5 kGy ␥-radiation, extremely high ␥doses, e.g., 25 kGy, produce frequent genome rearrangements among survivors. Our results show that the RecA protein is quintessential for the fidelity of repair of both spontaneous and ␥-radiation-induced DNA breaks and, consequently, for genome stability in D. radiodurans. The mechanisms of decreased genome stability in the absence of RecA are discussed.

A Decade of Biochemical and Structural Studies of the DNA Repair Machinery of Deinococcus radiodurans: Major Findings, Functional and Mechanistic Insight and Challenges

Computational and Structural Biotechnology Journal, 2016

The Deinococcus radiodurans bacterium is extremely resistant to ionising radiation and desiccation and can withstand a 200-fold higher radiation dose than most other bacteria with no loss of viability. The mechanisms behind this extreme resistance are not fully understood, but it is clear that several factors contribute to this phenotype. Efficient scavenging of reactive oxygen species and repair of damaged DNA are two of these. In this review, we summarise the results from a decade of structural and functional studies of the DNA repair machinery of Deinococcus radiodurans and discuss how these studies have contributed to an improved understanding of the molecular mechanisms underlying DNA repair and to the outstanding resistance of Deinococcus radiodurans to DNA damaging agents.

An ’open’ structure of the RecOR complex supports ssDNA binding within the core of the complex. Nucleic Acids Research 41:7972–7986. doi: 10.1093/nar/gkt572

2013

Efficient DNA repair is critical for cell survival and the maintenance of genome integrity. The homolo-gous recombination pathway is responsible for the repair of DNA double-strand breaks within cells. Initiation of this pathway in bacteria can be carried out by either the RecBCD or the RecFOR proteins. An important regulatory player within the RecFOR pathway is the RecOR complex that facilitates RecA loading onto DNA. Here we report new data regarding the assembly of Deinococcus radiodurans RecOR and its interaction with DNA, providing novel mechanistic insight into the mode of action of RecOR in homologous recombination. We present a higher resolution crystal structure of RecOR in an ‘open ’ conformation in which the tetrameric RecR ring flanked by two RecO molecules is ac-cessible for DNA binding. We show using small-angle neutron scattering and mutagenesis studies that DNA binding does indeed occur within the RecR ring. Binding of single-stranded DNA occurs without any major con...

Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein

Nucleic Acids Research, 2011

RecO is a recombination mediator protein (RMP) important for homologous recombination, replication repair and DNA annealing in bacteria. In all pathways, the single-stranded (ss) DNA binding protein, SSB, plays an inhibitory role by protecting ssDNA from annealing and recombinase binding. Conversely, SSB may stimulate each reaction through direct interaction with RecO. We present a crystal structure of Escherichia coli RecO bound to the conserved SSB C-terminus (SSB-Ct). SSB-Ct binds the hydrophobic pocket of RecO in a conformation similar to that observed in the ExoI/SSB-Ct complex. Hydrophobic interactions facilitate binding of SSB-Ct to RecO and RecO/RecR complex in both low and moderate ionic strength solutions. In contrast, RecO interaction with DNA is inhibited by an elevated salt concentration. The SSB mutant lacking SSB-Ct also inhibits RecO-mediated DNA annealing activity in a salt-dependent manner. Neither RecO nor RecOR dissociates SSB from ssDNA. Therefore, in E. coli, SSB recruits RMPs to ssDNA through SSB-Ct, and RMPs are likely to alter the conformation of SSB-bound ssDNA without SSB dissociation to initiate annealing or recombination. Intriguingly, Deinococcus radiodurans RecO does not bind SSB-Ct and weakly interacts with the peptide in the presence of RecR, suggesting the diverse mechanisms of DNA repair pathways mediated by RecO in different organisms.

Recombination and Replication in DNA Repair of Heavily Irradiated Deinococcus radiodurans

Cell, 2009

Deinococcus radiodurans' extreme resistance to ionizing radiation, desiccation, and DNA-damaging chemicals involves a robust DNA repair that reassembles its shattered genome. The repair process requires diploidy and commences with an extensive exonucleolytic erosion of DNA fragments. Liberated single-stranded overhangs prime strand elongation on overlapping fragments and the elongated complementary strands reestablish chromosomal contiguity by annealing. We explored the interdependence of the DNA recombination and replication processes in the reconstitution of the D. radiodurans genome disintegrated by ionizing radiation. The priming of extensive DNA repair synthesis involves RecA and RadA proteins. DNA polymerase III is essential for the initiation of repair synthesis, whereas efficient elongation requires DNA polymerases I and III. Inactivation of both polymerases leads to degradation of DNA fragments and rapid cell death. The present in vivo characterization of key recombination and replication processes dissects the mechanism of DNA repair in heavily irradiated D. radiodurans.

Expression of recA in Deinococcus radiodurans

Journal of Bacteriology, 1996

Deinococcus (formerly Micrococcus) radiodurans is remarkable for its extraordinary resistance to ionizing and UV irradiation and many other agents that damage DNA. This organism can repair > 100 double-strand breaks per chromosome induced by ionizing radiation without lethality or mutagenesis. We have previously observed that expression of D. radiodurans recA in Escherichia coli appears lethal. We now find that the RecA protein of D. radiodurans is ot detectable in D. radiodurans except in the setting of DNA damage and that termination of its synthesis is associated with the onset of deinococcal growth. The synthesis of Shigella flexneri RecA (protein sequence identical to that of E. coli RecA) in recA-defective D. radiodurans is described. Despite a large accumulation of the S. flexneri RecA in D. radiodurans, there is no complementation of any D. radiodurans recA phenotype, including DNA damage sensitivity, inhibition of natural transformation, or inability to support a plasmid...

Limited concentration of RecA delays DNA double-strand break repair in Deinococcus radiodurans R1

Molecular Microbiology, 2006

To evaluate the importance of RecA in DNA doublestrand break (DSB) repair, we examined the effect of low and high RecA concentrations such as 2500 and 100 000 molecules per cell expressed from the inducible P spac promoter in Deinococcus radiodurans in absence or in presence of IPTG respectively. We showed that at low concentration, RecA has a negligible effect on cell survival after γ γ γ γ-irradiation when bacteria were immediately plated on TGY agar whereas it significantly decreased the survival to γ γ γ γirradiation of ∆ ∆ ∆ ∆ ddrA cells while overexpression of RecA can partially compensate the loss of DdrA protein. In contrast, when cells expressing limited concentration of RecA were allowed to recover in TGY2X liquid medium, they showed a delay in mending DSB, failed to reinitiate DNA replication and were committed to die during incubation. A deletion of irrE resulted in sensitivity to γ γ γ γ-irradiation and mitomycin C treatment. Interestingly, constitutive high expression of RecA compensates partially the ∆ ∆ ∆ ∆ irrE sensitization to mitomycin C. The cells with low RecA content also failed to cleave LexA after DNA damage. However, neither a deletion of the lexA gene nor the expression of a non-cleavable LexA(Ind-) mutant protein had an effect on survival or kinetics of DNA DSB repair compared with their lexA + + + + counterparts in recA + + + + as well as in bacteria expressing limiting concentration of RecA, suggesting an absence of relationship between the absence of LexA cleavage and the loss of viability or the delay in the kinetics of DSB repair. Thus, LexA protein seems to play no major role in the recovery processes after γ γ γ γ-irradiation in D. radiodurans .