Tuber-specific expression of a yeast invertase and a bacterial glucokinase in potato leads to an activation of sucrose phosphate synthase and the creation of a sucrose futile cycle (original) (raw)

Induction of the activity of glycolytic enzymes correlates with enhanced hydrolysis of sucrose in the cytosol of transgenic potato tubers

Plant, Cell and Environment, 1999

The aim of this work was to define the metabolic factors which regulate the respiratory pathways in trangenic potato tubers. We previously found that respiration is enhanced in transgenic tubers which express a yeast invertase and a glucokinase from Zymomonas mobilis. In this study we investigated glycolysis in three further transgenic potato lines with profound changes in the mobilization of sucrose. We studied antisense ADPglucose pyrophosphorylase lines which are characterized by a reduction in starch accumulation and a significant build up of sucrose and related metabolic intermediates. We also report the generation of two novel double transgenic lines where the yeast invertase is expressed specifically in tubers of the ADPglucose pyrophosphorylase antisense line, targeted to either the cytosol or apopolast. We evaluated whether the localization of sucrose cleavage had an impact on the glycolytic induction, and assessed if invertase expression in the high-sucrose background had any further effects on glycolysis. We found that induction of the glycolytic enzymes only occurs when the invertase is targeted to the cytosol, and that the extent of this induction was comparable in the wild type and antisenseADPglucose pyrophosphorylase backgrounds. We conclude that the signal regulating glycolysis is directly linked to cytosolic sucrose hydrolysis.

Sucrose-phosphate synthase is regulated via metabolites and protein phosphorylation in potato tubers, in a manner analogous to the enzyme in leaves

Planta, 1994

i) Sucrose-phosphate synthase (SPS) was purified 40-fold from stored potato (Solanum tuberosum L.) tubers to a final specific activity of 33-70 nkat.(mg protein) -~ via batch elution from diethylaminoethyl (DEAE)-sephacel, polyethylene glycol (PEG) precipitation and Mono Q anion-exchange chromatography. (ii) Immunoblotting revealed a major and a minor band with molecular weights of 124.8 kDa and 133.5 kDa, respectively. Both bands were also present in extracts prepared in boiling SDS to exclude proteolysis. No smaller polypeptides were seen, except when the preparations were incubated before application on a polyacrylamide gel. (iii) The enzyme preparation was activated by glucose-6-phosphate and inhibited by inorganic phosphate. Both effectors had a large effect on the K m (fructose-6phosphate) and the K m (uridine-5-diphosphoglucose) with phosphate acting antagonistically to glucose-6phosphate. (iv) Preincubation of potato slices with low concentrations of okadaic acid or microcystin resulted in a three-to fourfold decrease in the activity of SPS when the tissue was subsequently extracted and assayed. The decrease was especially marked when the assay contained low concentrations of substrates and glucose-6-phosphate, and inorganic phosphate was included. Preincubation with mannose or in high osmoticum resulted in an increase of SPS activity. (v) Analogous changes were observed in germinating Ricinus communis L. seedlings. After preincubation of the cotyledons in glucose, high SPS activity could be measured, whereas okadaic acid, omission of glucose, or addition of phosphate or sucrose led to a large decrease of SPS activity in the "selective" assay. (vi) It is argued that SPS from non-photosynthetic tissues * Present address as 2 Abbreviations: Fru6P=fructose-6-phosphate; Glc6P=glucose-6phosphate; Pi --inorganic phosphate; PGI = phosphoglucose isomerase; PP2A = phosphoprotein phosphatase 2A; PEG = polyethyleneglycol; SPS =sucrose-phosphate synthase; UDPGIc= uridine-5-diphosphoglucose Correspondence to: R. Reimholz: FAX : 49 is regulated by metabolites and by protein phosphorylation in an analogous manner to the leaf enzyme.

Altered metabolic fluxes result from shifts in metabolite levels in sucrose phosphorylase-expressing potato tubers

Plant, Cell and Environment, 2002

As reported in a previous paper ( Plant, Cell and Environment 24, 357-365, 2001), introduction of sucrose phosphorylase into the cytosol of potato results in increased respiration, an inhibition of starch accumulation and decreased tuber yield. Herein a more detailed investigation into the effect of sucrose phosphorylase expression on tuber metabolism, in order to understand why storage and growth are impaired is described. (1) Although the activity of the introduced sucrose phosphorylase was low and accounted for less than 10% of that of sucrose synthase its expression led to a decrease in the activities of enzymes of starch synthesis relative to enzymes of glycolysis and relative to total amylolytic activity. (2) Incubation of tuber discs in [ 14 C]glucose revealed that the transformants display a two-fold increase of the unidirectional rate of sucrose breakdown. However this was largely compensated by a large stimulation of sucrose re-synthesis and therefore the net rate of sucrose breakdown was not greatly affected. Despite this fact major shifts in tuber metabolism, including depletion of sucrose to very low levels, higher rates of glycolysis, and larger pools of amino acids were observed in these lines. (3) Expression of sucrose phosphorylase led to a decrease of the cellular ATP/ADP ratio and energy charge in intact growing tubers. It was estimated that at least 30% of the ATP formed during respiration is consumed as a result of the large acceleration of the cycle of sucrose breakdown and re-synthesis in the transformants. Although the absolute rate of starch synthesis in short-term labelling experiments with discs rose, starch synthesis fell relative to other fluxes including respiration, and the overall starch content of the tubers was lower than in wild-type tubers. (4) External supply of amino acids to replace sucrose as an osmoticum led to a feed-back inhibition of glycolysis, but did not restore allocation to starch. (5) However, an external supply of the non-metabolizable sucrose analogue palatinose -but not sucrose itself -stimulated flux to starch in the transformants. (6) The results indicate that the impaired performance of sucrose phosphorylaseexpressing tubers is attributable to decreased levels of sucrose and increased energy consumption during sucrose futile cycling, and imply that sucrose degradation via sucrose synthase is important to maintain a relatively large sucrose pool and to minimize the ATP consumption required for normal metabolic function in the wild type.

A Bypass of Sucrose Synthase Leads to Low Internal Oxygen and Impaired Metabolic Performance in Growing Potato Tubers

PLANT PHYSIOLOGY, 2003

Plants possess two alternative biochemical pathways for sucrose (Suc) degradation. One involves hydrolysis by invertase followed by phosphorylation via hexokinase and fructokinase, and the other route-which is unique to plants-involves a UDP-dependent cleavage of Suc that is catalyzed by Suc synthase (SuSy). In the present work, we tested directly whether a bypass of the endogenous SuSy route by ectopic overexpression of invertase or Suc phosphorylase affects internal oxygen levels in growing tubers and whether this is responsible for their decreased starch content. (a) Oxygen tensions were lower within transgenic tubers than in wild-type tubers. Oxygen tensions decreased within the first 10 mm of tuber tissue, and this gradient was steeper in transgenic tubers. (b) Invertase-overexpressing tubers had higher activities of glyceraldehyde-3phosphate dehydrogenase, lactate dehydrogenase, and alcohol dehydrogenase, and (c) higher levels of lactate. (d) Expression of a low-oxygen-sensitive Adh1-␤-glucuronidase reporter gene construct was more strongly induced in the invertaseoverexpressing background compared with wild-type background. (e) Intact transgenic tubers had lower ATP to ADP ratios than the wild type. ATP to ADP ratio was restored to wild type, when discs of transgenic tubers were incubated at 21% (v/v) oxygen. (f) Starch decreased from the periphery to the center of the tuber. This decrease was much steeper in the transgenic lines, leading to lower starch content especially near the center of the tuber. (g) Metabolic fluxes (based on redistribution of 14 C-glucose) and ATP to ADP ratios were analyzed in more detail, comparing discs incubated at various external oxygen tensions (0%, 1%, 4%, 8%, 12%, and 21% [v/v]) with intact tubers. Discs of Suc phosphorylase-expressing lines had similar ATP to ADP ratios and made starch as fast as wild type in high oxygen but had lower ATP to ADP ratios and lower rates of starch synthesis than wild type at low-oxygen tensions typical to those found inside an intact tuber. (h) In discs of wild-type tubers, subambient oxygen concentrations led to a selective increase in the mRNA levels of specific SuSy genes, whereas the mRNA levels of genes encoding vacuolar and apoplastic invertases decreased. (i) These results imply that repression of invertase and mobilization of Suc via the energetically less costly route provided by SuSy is important in growing tubers because it conserves oxygen and allows higher internal oxygen tensions to be maintained than would otherwise be possible. .

RNA interference-mediated repression of sucrose-phosphatase in transgenic potato tubers (Solanum tuberosum) strongly affects the hexose-to-sucrose ratio upon cold storage with only minor effects on total soluble carbohydrate accumulation

Plant, Cell & Environment, 2007

'cold sweetening'. The aim of this work was to investigate the role of sucrose-phosphatase (SPP) in potato tuber carbohydrate metabolism at low temperature (4°C). To this end, RNA interference (RNAi) was used to reduce SPP expression in transgenic potato tubers. Analysis of SPP specific small interfering RNAs (siRNAs), SPP protein accumulation and enzyme activity indicated that SPP silencing in transgenic tubers was stable during the cold treatment. Analysis of soluble carbohydrates showed that in transgenic tubers, cold-induced hexogenesis was inhibited while, despite strongly reduced SPP activity, sucrose levels exceeded wild-type (WT) values four-to fivefold after 34 d of cold treatment. This led to a drastic change in the hexose-to-sucrose ratio from 1.9 in WT tubers to 0.15 to 0.11 in transgenic tubers, while the total amount of soluble sugars was largely unchanged in both genotypes. Sucrose-6 F -phosphate (Suc6P), the substrate of SPP, accumulated in transgenic tubers in the cold which most likely enables the residual enzyme to operate with maximal catalytic activity in vivo and thus, in the long term, counterbalances reduced SPP activity in the transformants. Northern analysis revealed that cold-induced expression of vacuolar invertase (VI) was blocked in SPP-silenced tubers explaining a reduced sucrose-to-hexose conversion. Suc6P levels were found to negatively correlate with VI expression. A possible role of Suc6P in regulating VI expression is discussed.

Expression of a bacterial sucrose phosphorylase in potato tubers results in a glucose-independent induction of glycolysis

Plant, Cell and Environment, 2001

Sugars are not only metabolic substrates: they also act as signals that regulate the metabolism of plants. Previously, we found that glycolysis is induced in transgenic tubers expressing a yeast invertase in the cytosol but not in those expressing invertase in the apoplast. This suggests that either the low level of sucrose, the increased formation of cytosolic glucose or the increased levels of metabolites downstream of the sucrose cleavage is responsible for the induction of glycolysis in storage organs. In order to discriminate between these possibilities, we cloned and expressed a bacterial sucrose phosphorylase gene from Pseudomonas saccharophila in potato tubers. Due to the phosphorolytic cleavage of sucrose, formation of glucose was circumvented, thus allowing assessment of the importance of cytosolic glucose -and, by implication, flux through hexokinase -in glycolytic induction. Expression of sucrose phosphorylase led to: (i) a decrease in sucrose content, but no decrease in glucose or fructose; (ii) a decrease in both starch accumulation and tuber yield; (iii) increased levels of glycolytic metabolites; (iv) an induction of the activities of key enzymes of glycolysis; and (v) increased respiratory activity. We conclude that the induction of glycolysis in heterotrophic tissues such as potato tubers occurs via a glucose-independent mechanism.

Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers

Plant, Cell and Environment, 2004

Starch is of great importance both as a carbon storage reserve in plants and as a biotechnologically important product. The potato tuber is an attractive model system for the study of starch metabolism, because it is a relatively homogenous tissue in which conversion of sucrose to starch represents the dominant metabolic flux. All the major genes of the potato tuber sucrose to starch pathway have been cloned in recent years, allowing the generation of a suite of antisense transgenic lines to be produced in which the activity of each individual enzyme in the pathway is progressively decreased. Investigations of these plants have provided a complete picture of the distribution of control in this important pathway. Sucrose synthase, UGPase, hexokinase, cytosolic phosphoglucomutase, plastidial phosphoglucomutase, the amyloplastidial adenylate translocator, AGPase, starch synthase and starch branching enzyme have flux control coefficients (FCCs) of 0.10, approximating 0.00, approximating 0.00, 0.15, 0.23, 0.98, 0.35, 0.12 and approximating 0.00 for starch accumulation. These results show that the majority of the control on starch accumulation in potato tubers resides in the transfer of adenylate between the cytosol and the amyloplast, with a minor contribution being made by the first two steps of the plastidial starch synthesis pathway (the reactions catalysed by plastidial phosphoglucomutase and AGPase). This contrasts with leaves, in which the majority of the control has been found to reside in the reactions catalysed by plastidial phosphoglucomutase and AGPase. In leaves, ATP for starch synthesis is generated within the plastid via photophosphorylation. Several studies have attempted to increase the rate of starch synthesis by overexpressing pathway enzymes in tubers. The results of these studies and the role of other ATP producers in the starch synthetic process are reviewed. In the same time period methods of nonaqueous fractionation have been adapted to potato tuber tissue in order to ascertain subcellular metabolite levels. Results obtained from these studies allow the calculation of mass action ratios of the constitutive enzymes of the sucrose to starch transition. When taken together with the known regulatory properties of these enzymes the combination of broad control analysis studies and assessment of the mass action ratios of the respective enzymes allows a comprehensive description of this important metabolic network. Some illustrative examples of how this network responds to environmental change are presented. Finally implications of this whole pathway evaluation for more general studies of plant metabolic pathways and networks are discussed.

Metabolism in slices from growing potato tubers responds differently to addition of sucrose and glucose

Planta, 1998

The short-term changes in metabolism that occurred after adding glucose or sucrose to freshly cut discs from growing potato (Solanum tuberosum L.) tubers were investigated. (i) When glucose was supplied, there was a marked increase in glycolytic metabolites, and respiration was stimulated. When sucrose was supplied, amounts of glycolytic metabolites including hexose phosphates and 3-phosphoglycerate (3PGA) were similar to or lower than in control discs incubated without sugars, and respiration did not rise initially above that in control discs. This dierent response to sucrose and glucose was found across the concentration range 5±200 mM. A larger proportion of the metabolised 14 C was converted to starch when [ 14 C] sucrose was supplied than when [ 14 C] glucose was supplied. The dierent eect on metabolite levels, respiration and starch synthesis was largest after 20±30 min, and decreased in longer incubations. (ii) When 5 or 25 mM sucrose was added in the presence of [ 14 C] glucose, it led to a decrease in hexose phosphates and 3PGA, and a small increase in the rate of starch synthesis compared to discs incubated with glucose in the absence of sucrose. These dierences were seen in a 30-min pulse and a 2-h pulse. Whereas ADP-glucose levels after adding sucrose resembled those in control discs, glucose led to a decrease in ADP-glucose. This decrease did not occur when 5 or 25 mM sucrose was added with the glucose. (iii) To check the relevance of these experiments for intact tubers, water or 100 mM mannitol, sucrose or glucose were supplied through the stolon to intact tubers for 24 h. A 0.2 mM solution of [ 14 C] glucose was then introduced into the tubers, and its metabolism investigated during the next 30 min. Labelling of starch was increased after preincubation with sucrose, and signi®cantly inhibited after preincubation with glucose. (iv) It is concluded that glucose and sucrose have dierent eects on tuber metabolism. Whereas glucose leads to a preferential stimulation of respiration, sucrose preferentially stimulates starch synthesis via a novel mechanism that allows stimulation of ADP-glucose pyrophosphorylase even though the levels of hexose phosphates and the allosteric activator 3PGA decrease.