List matrix partitions of chordal graphs (original) (raw)
Abstract
It is well known that a clique with k + 1 vertices is the only minimal obstruction to k-colourability of chordal graphs. A similar result is known for the existence of a cover by cliques. Both of these problems are in fact partition problems, restricted to chordal graphs. The first seeks partitions into k independent sets, and the second is equivalent to finding partitions into cliques. In an earlier paper we proved that a chordal graph can be partitioned into k independent sets and cliques if and only if it does not contain an induced disjoint union of + 1 cliques of size k + 1. (A linear time algorithm for finding such partitions can be derived from the proof.)
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (27)
- H.L. Bodlaender, T. Kloks, Efficient and constructive algorithms for the pathwidth and treewidth of graphs, J. Algorithms 21 (1996) 358-402.
- A. Brandstädt, Partitions of graphs into one or two stable sets and cliques, Discrete Math. 152 (1996) 47-54.
- A. Brandstädt, P.L. Hammer, V.B. Le, V.V. Lozin, Bisplit graphs, DIMACS TR 2002-44.
- K. Cameron, E.M. Eschen, C.T. Hoang, R. Sritharan, The list partition problem for graphs, SODA 2004, 2004.
- M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, eprint arXiv:math/0212070.
- V. Chvátal, Star-cutsets and perfect graphs, J. Combin. Theory B 39 (1985) 189-199.
- C.M.H. de Figueiredo, S. Klein, Y. Kohayakawa, B.A. Reed, Finding skew partitions efficiently, J. Algorithms 37 (2000) 505-521.
- J. Diaz, M. Serna, D.M. Thilikos, Recent results on parametrized H-colourings, in: J. Nešetřil, P. Winkler (Eds.), DIMACS series in Discrete Mathematics and Theoretical Computer Science, Vol. 63, pp. 65-85, American Math. Society, 2004.
- T. Feder, P. Hell, Full constraint satisfaction problems, manuscript.
- T. Feder, P. Hell, Matrix partitions of perfect graphs, Special Issue of Discrete Math., in Memory of Claude Berge, 2005.
- T. Feder, P. Hell, J. Huang, List homomorphisms and circular arc graphs, Combinatorica 19 (1999) 487-505.
- T. Feder, P. Hell, J. Huang, Bi-arc graphs and the complexity of list homomorphisms, J. Graph Theory 42 (2003) 61-80.
- T. Feder, P. Hell, S. Klein, R. Motwani, Complexity of list partitions, in: Proc. 31st Annu. ACM Symp. on Theory of Computing, 1999, pp. 464-472.
- T. Feder, P. Hell, S. Klein, R. Motwani, List partitions, SIAM J. Discrete Math. 16 (2003) 449-478.
- T. Feder, P. Hell, S. Klein, L. Tito Nogueira, F. Protti, List matrix partitions of chordal graphs, LATIN 2004, Lecture Notes in Computer Science, Vol. 2976, 2004, pp. 100-108.
- T. Feder, P. Hell, S. Klein, L. Tito Nogueira, F. Protti, Chordal obstructions to M-partitions, manuscript. www.cs.sfu.ca/∼pavol/chordalOBST.ps.
- T. Feder, P. Hell, D. Král', J. Sgall, Two algorithms for general list matrix partitions, SODA 2005, 2005.
- T. Feder, P. Hell, K.M. Tucker-Nally, Digraph matrix partitions and trigraph homomorphisms, manuscript.
- M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
- P. Hell, S. Klein, L.T. Nogueira, F. Protti, Partitioning chordal graphs into independent sets and cliques, Discrete Appl. Math. 141 (2004) 185-194.
- P. Hell, S. Klein, L.T. Nogueira, F. Protti, Packing r-cliques in weighted chordal graphs, Ann. Oper. Res. 138 (2005) 179-187.
- P. Hell, J. Nešetřil, Graphs and Homomorphisms, Oxford University Press, Oxford, 2004.
- R.M. McConnel, J.P. Spinrad, Linear time modular decomposition and efficient transitive orientation of comparability graphs, in: Proc. ACM- SIAM Symp. on Discrete Algorithms, 1994, pp. 536-545.
- A. Proskurowski, S. Arnborg, Linear time algorithms for NP-hard problems restricted to partial k-trees, Discrete Appl. Math. (23) (1989) 11-24.
- R.E. Tarjan, Decomposition by clique separators, Discrete Math. 55 (1985) 221-232.
- A. Tucker, Coloring graphs with stable sets, J. Combin. Theory Ser. B 34 (1983) 258-267.
- S. Whitesides, An algorithm for finding clique cutsets, Inform. Process. Lett. 12 (1981) 31-32.