Modeling breast cancer progression and evaluating screening policies (original) (raw)

2013 Proceedings Annual Reliability and Maintainability Symposium (RAMS), 2013

Abstract

ABSTRACT In this paper we use a five-state model to describe the progression of invasive breast cancer. The states of the model are: 1. Healthy or non-detectable cancer, 2. Preclinical (screening detectable cancer), 3. Clinical (symptoms are evident), 4. Death due to breast cancer, and 5. Death due to causes other than breast cancer. We model the natural progression of breast cancer from healthy state to clinical cancer using a partially observable Markov model. We model the survival time from cancer diagnosis to breast cancer mortality using a Weibull Proportional Hazards Model (PHM). The effect of covariates in both models are also studied. We then combine the two models and develop a simulation model to evaluate the effect of different screening intervals in reducing breast cancer mortality. We use the data from the Canadian National Breast Screening Study (CNBSS), which consists of two randomized screening trials designed to evaluate the effect of mammography on women aged 40-59. The results reveal that screening can be effective in detecting breast cancer at earlier stages, so reducing breast cancer mortality. We estimated a higher reduction for older women.

Dragan Banjevic hasn't uploaded this paper.

Let Dragan know you want this paper to be uploaded.

Ask for this paper to be uploaded.