CLINICAL APPLICATIONS OF 90 Y GLASS MICROSPHERES IN ONCOLOGY: OPPORTUNITIES AND RISKS (original) (raw)
Related papers
Biomedical Radioactive Glasses for Brachytherapy
Materials
The fight against cancer is an old challenge for mankind. Apart from surgery and chemotherapy, which are the most common treatments, use of radiation represents a promising, less invasive strategy that can be performed both from the outside or inside the body. The latter approach, also known as brachytherapy, relies on the use of implantable beta-emitting seeds or microspheres for killing cancer cells. A set of radioactive glasses have been developed for this purpose but their clinical use is still mainly limited to liver cancer. This review paper provides a picture of the biomedical glasses developed and experimented for brachytherapy so far, focusing the discussion on the production methods and current limitations of the available options to their diffusion in clinical practice. Highly-durable neutron-activatable glasses in the yttria-alumina-silica oxide system are typically preferred in order to avoid the potentially-dangerous release of radioisotopes, while the compositional de...
Advances in Nuclear Oncology: Microspheres for Internal Radionuclide Therapy of Liver Tumours
Liver metastases cause the majority of deaths from colorectal cancer, and response to chemotherapy and external radiotherapy is poor. An alternative is internal radionuclide therapy using 90 Y labeled microspheres. These microspheres are very stable and have a proven efficacy in the field of treatment of primary or metastatic hepatic cancer. Whilst these glass spheres showed encouraging results in patients, their high density is a serious drawback. Currently, other materials with lower densities and other radioisotopes are being investigated in order to optimize this promising new therapy. Three major radiolabeled microsphere materials, viz. glass, resin-based and polymer-based, are now available for therapy or are being tested in animals. In this review the preparation, stability and degradation of these spheres are discussed.