Secreted Aspartyl Proteinases and Interactions of Candida albicans with Human Endothelial Cells (original) (raw)

Secreted aspartyl proteases and interactions of Candida albicans with human endothelial cells

Infection and Immunity

The endothelial cell interactions of homozygous null mutants of Candida albicans that were deficient in secreted aspartyl proteinase 1 (Sap1), Sap2, or Sap3 were investigated. Only Sap2 was found to contribute to the ability of C. albicans to damage endothelial cells and stimulate them to express E-selectin. None of the Saps studied appears to play a role in C. albicans adherence to endothelial cells.

Limited role of secreted aspartyl proteinases Sap1-6 in Candida albicans virulence and host immune response in murine hematogenously disseminated candidiasis

Infection and Immunity, 2010

Candida albicans secreted aspartyl proteinases (Saps) are considered virulence-associated factors. Several members of the Sap family were claimed to play a significant role in the progression of candidiasis established by the hematogenous route. This assumption was based on the observed attenuated virulence of sap-null mutant strains. However, the exclusive contribution of SAP genes to their attenuated phenotype was not unequivocally confirmed, as the Ura status of these mutant strains could also have contributed to the attenuation. In this study, we have reassessed the importance of SAP1 to SAP6 in a murine model of hematogenously disseminated candidiasis using sap-null mutant strains not affected in their URA3 gene expression and compared their virulence phenotypes with those of Ura-blaster sap mutants. The median survival time of BALB/c mice intravenously infected with a mutant strain lacking SAP1 to SAP3 was equivalent to that of mice infected with wild-type strain SC5314, while those infected with mutant strains lacking SAP5 showed slightly extended survival times. Nevertheless, no differences could be observed between the wild type and a ⌬sap456 mutant in their abilities to invade mouse kidneys. Likewise, a deficiency in SAP4 to SAP6 had no noticeable impact on the immune response elicited in the spleens and kidneys of C. albicans-infected mice. These results contrast with the behavior of equivalent Ura-blaster mutants, which presented a significant reduction in virulence. Our results suggest that Sap1 to Sap6 do not play a significant role in C. albicans virulence in a murine model of hematogenously disseminated candidiasis and that, in this model, Sap1 to Sap3 are not necessary for successful C. albicans infection.

Limited Role of Secreted Aspartyl Proteinases Sap1 to Sap6 in Candida albicans Virulence and Host Immune Response in Murine Hematogenously Disseminated Candidiasis

Infection and Immunity, 2010

Candida albicans secreted aspartyl proteinases (Saps) are considered virulence-associated factors. Several members of the Sap family were claimed to play a significant role in the progression of candidiasis established by the hematogenous route. This assumption was based on the observed attenuated virulence of sap-null mutant strains. However, the exclusive contribution of SAP genes to their attenuated phenotype was not unequivocally confirmed, as the Ura status of these mutant strains could also have contributed to the attenuation. In this study, we have reassessed the importance of SAP1 to SAP6 in a murine model of hematogenously disseminated candidiasis using sap-null mutant strains not affected in their URA3 gene expression and compared their virulence phenotypes with those of Ura-blaster sap mutants. The median survival time of BALB/c mice intravenously infected with a mutant strain lacking SAP1 to SAP3 was equivalent to that of mice infected with wild-type strain SC5314, while those infected with mutant strains lacking SAP5 showed slightly extended survival times. Nevertheless, no differences could be observed between the wild type and a ⌬sap456 mutant in their abilities to invade mouse kidneys. Likewise, a deficiency in SAP4 to SAP6 had no noticeable impact on the immune response elicited in the spleens and kidneys of C. albicans-infected mice. These results contrast with the behavior of equivalent Ura-blaster mutants, which presented a significant reduction in virulence. Our results suggest that Sap1 to Sap6 do not play a significant role in C. albicans virulence in a murine model of hematogenously disseminated candidiasis and that, in this model, Sap1 to Sap3 are not necessary for successful C. albicans infection.

The expression of the secreted aspartyl proteinases Sap4 to Sap6 from Candida albicans in murine macrophages

Molecular Microbiology, 1998

Medically important yeasts of the genus Candida secrete aspartyl proteinases (Sap), which are of particular interest as virulence factors. Six closely related gene sequences, SAP1 to SAP6, for secreted proteinases are present in Candida albicans. The methylotrophic yeast Pichia pastoris was chosen as an expression system for preparing substantial amounts of each Sap isoenzyme. Interestingly, Sap4, Sap5 and Sap6, which have not yet been detected in C. albicans cultures in vitro, were produced as active recombinant enzymes. Different Sap polyclonal antibodies were raised in rabbits and tested before further application by enzyme-linked immunosorbent assay (ELISA) against each recombinant Sap. Two antisera recognized only Sap4 to Sap6. Using these antisera, together with sap null mutants obtained by targeted mutagenesis, we could demonstrate a high production of Sap4, Sap5 and Sap6 by C. albicans cells after phagocytosis by murine peritoneal macrophages. Furthermore, a ⌬sap4,5,6 null mutant was killed 53% more effectively after contact with macrophages than the wild-type strain. These results support a role for Sap4 to Sap6 in pathogenicity.

In vitro Study of Secreted Aspartyl Proteinases Sap1 to Sap3 and Sap4 to Sap6 Expression in Candida albicans Pleomorphic Forms

Polish Journal of Microbiology, 2012

Transition from round budding cells to long hyphal forms and production of secreted aspartic proteases (Saps) are considered virulence-associated factors of Candida albicans. Although plenty of data dealing with Saps involvement in the infection process have been published, Saps expression by the different pleomorphic forms as well as the capacity of C. albicans filaments to express Sap1-6 under serum influence are poorly investigated. In this study, we used immunofluorescence and immunoelectron microscopy for the detection of Sap1-6 isoenzymes in C. albicans pleomorphic cells (blastoconidia, germ tubes, pseudohyphae, true hyphae) grown in Sap-inductive human serum and Sap non-inductive medium - yeast extract-peptone-glucose (YEPD). Isoenzymes were below the detection level in all blastoconidial cells grown in YEPD for 18 h. Sap1-6 expression was hardly detected in C. albicans cells cultivated in serum for 20 min. Increasing level of Sap1-6 expression was observed when C. albicans w...

Altered adherence in strains of Candida albicans harbouring null mutations in secreted aspartic proteinase genes

FEMS Microbiology Letters, 1998

The aspartate proteinase inhibitor pepstatin A has been shown previously to reduce the adherence of Candida albicans yeast cells to human surfaces. This suggests that in addition to their presumed function facilitating tissue penetration, the secreted aspartate proteinases (Saps) of this fungal pathogen may have auxiliary roles as cellular adhesins. We therefore examined the relative adherence of yeast cells of a parental wild-type strain of C. albicans in relation to yeast cells of strains harbouring specific disruptions in various members of the SAP gene family in an otherwise isogenic background. The adhesiveness of vsap1, vsap2 and vsap3 null mutants and a triple vsap 4^6 disruptant was examined on three surfaces^glass coated with poly-L-lysine or a commercial cell-free basement membrane preparation (Matrigel) and on human buccal epithelial cells. Pepstatin A reduced adherence to all surfaces. Adherence of the each of the single SAP null mutants to these three substrates was either reduced or not affected significantly compared to that of the parental strain. The adherence of the vsap4^6 mutant was reduced on poly-L-lysine and Matrigel, but increased on buccal cells. The results suggest that in addition to a primary enzymatic role, various SAPs may also act singly or synergistically to enhance the adhesiveness to C. albicans cells to certain human tissues. z 1998 Federation of European Microbiological Societies. Published by Elsevier Science B.V.

Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis

Microbiology (Reading, England), 2008

A quantitative real-time RT-PCR system was established to identify which secreted aspartyl proteinase (SAP) genes are most highly expressed and potentially contribute to Candida albicans infection of human epithelium in vitro and in vivo. C. albicans SC5314 SAP1-10 gene expression was monitored in organotypic reconstituted human epithelium (RHE) models, monolayers of oral epithelial cells, and patients with oral (n=17) or vaginal (n=17) candidiasis. SAP gene expression was also analysed in Δsap1-3, Δsap4-6, Δefg1 and Δefg1/cph1 mutants to determine whether compensatory SAP gene regulation occurs in the absence of distinct proteinase gene subfamilies. In monolayers, RHE models and patient samples SAP9 was consistently the most highly expressed gene in wild-type cells. SAP5 was the only gene significantly upregulated as infection progressed in both RHE models and was also highly expressed in patient samples. Interestingly, the SAP4-6 subfamily was generally more highly expressed in oral monolayers than in RHE models. SAP1 and SAP2 expression was largely unchanged in all model systems, and SAP3, SAP7 and SAP8 were expressed at low levels throughout. In Δsap1-3, expression was compensated for by increased expression of SAP5, and in Δsap4-6, expression was compensated for by SAP2: both were observed only in the oral RHE. Both Δsap1-3 and Δsap4-6 mutants caused RHE tissue damage comparable to the wildtype. However, addition of pepstatin A reduced tissue damage, indicating a role for the Sap family as a whole in inducing epithelial damage. With the hypha-deficient mutants, RHE tissue damage was significantly reduced in both Δefg1/cph1 and Δefg1, but SAP5 expression was only dramatically reduced in Δefg1/cph1 despite the absence of hyphal growth in both mutants. This indicates that hypha formation is the predominant cause of tissue damage, and that SAP5 expression can be hyphaindependent and is not solely controlled by the Efg1 pathway but also by the Cph1 pathway. This is believed to be the first study to fully quantify SAP gene expression levels during human mucosal infections; the results suggest that SAP5 and SAP9 are the most highly expressed proteinase genes in vivo. However, the overall contribution of the Sap1-3 and Sap4-6 subfamilies individually in inducing epithelial damage in the RHE models appears to be low.

Disruption of Each of the Secreted Aspartyl Proteinase Genes SAP1, SAP2, and SAP3 of Candida albicans Attenuates Virulence

1997

Secreted aspartyl proteinases (Saps), encoded by a gene family with at least nine members (SAP1 to SAP9), are one of the most discussed virulence factors produced by the human pathogen Candida albicans. In order to study the role of each Sap isoenzyme in pathogenicity, we have constructed strains which harbor mutations at selected SAP genes. SAP1, SAP2, and SAP3, which are regulated differentially in vitro, were mutated by targeted gene disruption. The growth rates of all homozygous null mutants were similar to those of the isogenic wild-type parental strain (SC5314) in complex and defined media. In medium with protein as the sole source of nitrogen, sap1 and sap3 mutants grew with reduced growth rates but reached optical densities similar to those measured for SC5314. In contrast, sap2 null mutants tended to clump, grew poorly in this medium, and produced the lowest proteolytic activity. Addition of ammonium ions reversed such growth defects. These results support the view that Sap2 is the dominant isoenzyme. When sap1, sap2, and sap3 mutants were injected intravenously in guinea pigs and mice, the animals had increased survival rates compared to those of control animals infected with SC5314. However, reduction of proteolytic activity in vitro did not correlate directly with the extent of attenuation of virulence observed for all Sap-deficient mutants. These data suggest that SAP1, SAP2, and SAP3 all contribute to the overall virulence of C. albicans and presumably all play important roles during disseminated infections.

Candida albicans proteinases and host/pathogen interactions

Cellular Microbiology, 2004

Candida infections are common, debilitating and often recurring fungal diseases and a problem of significant clinical importance. Candida albicans , the most virulent of the Candida spp., can cause severe mucosal and life-threatening systemic infections in immunocompromised hosts. Attributes that contribute to C. albicans virulence include adhesion, hyphal formation, phenotypic switching and extracellular hydrolytic enzyme production. The extracellular hydrolytic enzymes, especially the secreted aspartyl proteinases (Saps), are one of few gene products that have been shown to directly contribute to C. albicans pathogenicity. Because C. albicans is able to colonize and infect almost every tissue in the human host, it may be crucial for the fungus to possess a number of similar but independently regulated and functionally distinct secreted proteinases to provide sufficient flexibility in order to survive and promote infection at different niche sites. The aim of this review is to explore the functional roles of the C. albicans proteinases and how they may contribute to the host/ pathogen interaction in vivo .