Joint inversion of surface waves and teleseismic body waves across the Tibetan collision zone: the fate of subducted Indian lithosphere (original) (raw)

Abstract

We carry out a joint inversion of surface wave dispersion curves and teleseismic shear wave arrival times across the Tibetan collision zone, from just south of the Himalaya to the Qaidam Basin at the northeastern margin of the plateau, and from the surface to 600 km depth. The surface wave data consist of Rayleigh-wave group dispersion curves, mainly in the period range from 10 to 70 s, with a maximum of 2877 source-receiver pairs. The body wave data consist of more than 8000 S-wave arrival times recorded from 356 telesesmic events. The tomographic images show a 'wedge' of fast seismic velocities beneath central Tibet that starts underneath the Himalaya and reaches as far as the Bangong-Nujiang Suture (BNS). In our preferred interpretation, in central Tibet the Indian lithosphere underthrusts the plateau to approximately the BNS, and then subducts steeply. Further east, Indian lithosphere appears to be subducting at an angle of ∼45 • . We see fast seismic velocities under much of the plateau, as far as the BNS in central Tibet, and as far as the Xiangshuihe-Xiaojiang Fault in the east. At 150 km depth, the fast region is broken by an area ∼300 km wide that stretches from the northern edge of central Tibet southeastwards as far as the Himalaya. We suggest that this gap, which has been observed previously by other investigators, represents the northernmost edge of the Indian lithosphere, and is a consequence of the steepening of the subduction zone from central to eastern Tibet. This also implies that the fast velocities in the northeast have a different origin, and are likely to be caused by lithospheric thickening or small-scale subduction of Asian lithosphere. Slow velocities observed to the south of the Qaidam suggest that the basin is not subducting. Finally, we interpret fast velocities below 400 km as subducted material from an earlier stage of the collision that has stalled in the transition zone. Its position to the south of the present subduction is likely to be due to the relative motion of India to the northeast.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (82)

  1. Abers, G.A. & Roecker, S.W., 1991. Deep structure of an arc-continent collision: earthquake relocation and inversion for upper mantle P and S wave velocities beneath Papua New Guinea, J. geophys. Res., 96(B4), 6379-6401.
  2. Acton, C.E., Priestley, K., Gaur, V.K. & Rai, S.S., 2010. Group velocity to- mography of the Indo-Eurasian collision zone, J. geophys. Res., 115(B12), B12335, doi:10.1029/2009JB007021.
  3. Acton, C.E., Priestley, K., Mitra, S. & Gaur, V.K., 2011. Crustal structure of the Darjeeling-Sikkim Himalaya and southern Tibet, Geophys. J. Int., 184(2), 829-852.
  4. Agius, M.R. & Lebedev, S., 2013. Tibetan and Indian lithospheres in the upper mantle beneath Tibet: evidence from broadband surface-wave dis- persion, Geochem. Geophys. Geosyst., 14(10), 4260-4281.
  5. Aitchison, J.C., Ali, J.R. & Davis, A.M., 2007. When and where did India and Asia collide? J. geophys. Res: Sol. Earth, 112(B5), 2156-2202.
  6. Antolik, M., Gu, Y.J., Ekström, G. & Dziewonski, A.M., 2003. J362D28: a new joint model of compressional and shear velocity in the Earth's mantle, Geophys. J. Int., 153(2), 443-466.
  7. Barron, J. & Priestley, K., 2009. Observations of frequency-dependent Sn propagation in Northern Tibet, Geophys. J. Int., 179(1), 475-488.
  8. Ceylan, S., Ni, J., Chen, J.Y., Zhang, Q., Tilmann, F. & Sandvol, E., 2012. Fragmented Indian plate and vertically coherent defor- mation beneath eastern Tibet, J. geophys. Res., 117(B11), B11303, doi:10.1029/2012JB009210.
  9. Chen, W.-P., Martin, M., Tseng, T.-L., Nowack, R.L., Hung, S.-H. & Huang, B.-S., 2010. Shear-wave birefringence and current configuration of con- verging lithosphere under Tibet, Earth planet. Sci. Lett., 295(1-2), 297- 304.
  10. Copley, A., Avouac, J.-P. & Royer, J.-Y., 2010. India-Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions, J. geophys. Res., 115(B3), doi:10.1029/2009JB006634.
  11. Cotte, N., Pedersen, H., Campillo, M., Mars, J., Ni, J.F., Kind, R., Sandvol, E. & Zhao, W., 1999. Determination of the crustal structure in southern Tibet by dispersion and amplitude analysis of Rayleigh waves, Geophys. J. Int., 138(3), 809-819.
  12. de la Torre, T.L., Monsalve, G., Sheehan, A.F., Sapkota, S. & Wu, F., 2007. Earthquake processes of the Himalayan collision zone in eastern Nepal and the southern Tibetan Plateau, Geophys. J. Int., 171(2), 718-738.
  13. Feng, M., An, M., Zhao, W., Xue, G., Mechie, J. & Zhao, Y., 2011. Lithosphere structures of northeast Tibetan Plateau and their geodynamic implications, J. Geodyn., 52(5), 432-442.
  14. Frederiksen, A., Bostock, M., VanDecar, J. & Cassidy, J., 1998. Seismic structure of the upper mantle beneath the northern Canadian Cordillera from teleseismic travel-time inversion, Tectonophysics, 294(1-2), 43-55.
  15. Friederich, W., 2003. The S-velocity structure of the East Asian mantle from inversion of shear and surface waveforms, Geophys. J. Int., 153(1), 88-102.
  16. Gilligan, A., Roecker, S.W., Priestley, K.F. & Nunn, C. Shear velocity model for the Kyrgyz Tien Shan from joint inversion of receiver function and surface wave data, Geophys. J. Int., in press.
  17. Gomberg, J.S. & Masters, T.G., 1988. Waveform modelling using locked- mode synthetic and differential seismograms: application to determina- tion of the structure of Mexico, Geophys. J. Int., 94(2), 193-218.
  18. Graeber, F.M., Houseman, G.A. & Greenhalgh, S.A., 2002. Regional tele- seismic tomography of the western Lachlan Orogen and the Newer Volcanic Province, southeast Australia, Geophys. J. Int., 149(2), 249- 266.
  19. He, R., Zhao, D., Gao, R. & Zheng, H., 2010. Tracing the Indian lithospheric mantle beneath central Tibetan Plateau using teleseismic tomography, Tectonophysics, 491(1-4), 230-243.
  20. Hermann, R.B. & Ammon, C.J., 2002. Computer Programs in Seismology: Surface Waves, Receiver Functions and Crustal Structure, Saint Louis Univ.
  21. Hole, J.A. & Zelt, B.C., 1995. 3-D finite-difference reflection travel times, Geophys. J. Int., 121(2), 427-434.
  22. Houseman, G.A., McKenzie, D.P. & Molnar, P., 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts, J. geophys. Res., 86(B7), 6115-6132.
  23. Hung, S.-H., Chen, W.-P., Chiao, L.-Y. & Tseng, T.-L., 2010. First multi- scale, finite-frequency tomography illuminates 3-D anatomy of the Tibetan Plateau, Geophys. Res. Lett., 37(6), L06304, doi:10.1029/2009GL041875.
  24. Karplus, M.S., Zhao, W., Klemperer, S.L., Wu, Z., Mechie, J., Shi, D., Brown, L.D. & Chen, C., 2011. Injection of Tibetan crust beneath the south Qaidam Basin: evidence from INDEPTH IV wide-angle seismic data, J. geophys. Res., 116(B7), B07301, doi:10.1029/2010JB007911.
  25. Kennett, B.L.N., Engdahl, E.R. & Buland, R., 1995. Constraints on seismic velocities in the Earth from traveltimes, Geophys. J. Int., 122, 108-124.
  26. Kind, R. et al., 2002. Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction, Science, 298, 1219-1221.
  27. Larson, K.M., Bürgmann, R., Bilham, R. & Freymueller, J.T., 1999. Kinematics of the India-Eurasia collision zone from GPS measurements, J. geophys. Res: Sol. Earth, 104(B1), 1077-1093.
  28. Lebedev, S. & van der Hilst, R.D., 2008. Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms, Geophys. J. Int., 173, 1-14.
  29. Lei, J. & Zhao, D., 2007. Teleseismic P-wave tomography and the upper mantle structure of the central Tien Shan orogenic belt, Phys. Earth planet. Inter., 162(3-4), 165-185.
  30. Li, C., van der Hilst, R.D., Meltzer, A.S. & Engdahl, E.R., 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma, Earth planet. Sci. Lett., 274(1-2), 157-168.
  31. Li, Z., Roecker, S., Wei, B., Wang, H., Schelochkov, G. & Bragin, V., 2009. Tomographic image of the crust and upper mantle beneath the western Tien Shan from the MANAS broadband deployment: possible evidence for lithospheric delamination, Tectonophysics, 477(1-2), 49-57.
  32. Liang, C. & Song, X., 2006. A low velocity belt beneath northern and eastern Tibetan Plateau from Pn tomography, Geophys. Res. Lett., 33(22), L22306, doi:10.1029/2006GL027926.
  33. Liang, X., Shen, Y., Chen, Y.J. & Ren, Y., 2011. Crustal and mantle velocity models of southern Tibet from finite frequency tomography, J. geophys. Res: Sol. Earth, 116(B2), B02408, doi:10.1029/2009JB007159.
  34. Liang, X., Sandvol, E., Chen, Y.J., Hearn, T., Ni, J., Klemperer, S., Shen, Y. & Tilmann, F., 2012. A complex Tibetan upper mantle: a fragmented Indian slab and no south-verging subduction of Eurasian lithosphere, Earth planet. Sci. Lett., 333-334, 101-111.
  35. Martin, M., Ritter, J.R.R. & the CALIXTO working group, 2005. High- resolution teleseismic body-wave tomography beneath SE Romania: I. Implications for three-dimensional versus one-dimensional crustal cor- rection strategies with a new crustal velocity model, Geophys. J. Int., 162(2), 448-460.
  36. Masek, J.G., Isacks, B.L., Fielding, E.J. & Browaeys, J., 1994. Rift flank uplift in Tibet: evidence for a viscous lower crust, Tectonics, 13(3), 659- 667.
  37. McKenzie, D. & Priestley, K., 2008. The influence of lithospheric thickness variations on continental evolution, Lithos, 102, 1-11.
  38. McNamara, D.E., Owens, T.J. & Walter, W.R., 1995. Observations of re- gional phase propagation across the Tibetan Plateau, J. geophys. Res., 100, 22 215-22 230.
  39. Mechie, J. & Kind, R., 2013. A model of the crust and mantle structure down to 700km depth beneath the Lhasa to Golmud transect across the Tibetan plateau as derived from seismological data, Tectonophysics, 606, 187-197.
  40. Mégnin, C. & Romanowicz, B., 2000. The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and higher- mode waveforms, Geophys. J. Int., 143(3), 709-728.
  41. Mitra, S., Priestley, K., Bhattacharyya, A.K. & Gaur, V.K., 2005. Crustal structure and earthquake focal depths beneath northeastern India and southern Tibet, Geophys. J. Int., 160(1), 227-248.
  42. Mitra, S., Priestley, K., Gaur, V.K., Rai, S.S. & Haines, J., 2006. Variation of Rayleigh wave group velocity dispersion and seismic heterogeneity of the Indian crust and uppermost mantle, Geophys. J. Int., 164, 88- 98.
  43. Molnar, P., 1988. A Review of Geophysical Constraints on the Deep Structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their Tectonic Implications, Phil. Trans. R. Soc.: Math. Phys. Eng. Sci., 326(1589), 33-88.
  44. Molnar, P. & Tapponnier, P., 1975. Cenozoic tectonics of Asia: effects of a continental collision, Science, 189, 419-426.
  45. Montagner, J.-P., 1986. Regional three-dimensional structures using long- period surface waves, Ann. Geophys., 4, 283-291.
  46. Ni, J. & Barazangi, M., 1983. High-frequency seismic wave propagation be- neath the Indian Shield, Himalayan Arc, Tibetan Plateau and surrounding regions: high uppermost mantle velocities and efficient Sn propagation beneath Tibet, Geophys. J. Int., 72(3), 665-689.
  47. Nolet, G., 1990. Partitioned waveform inversion and two-dimensional struc- ture under the network of autonomously recording seismographs, J. geophys. Res: Sol. Earth, 95(B6), 8499-8512.
  48. Nunn, C. et al., 2014. Imaging the lithosphere beneath NE Tibet: teleseis- mic P and S body wave tomography incorporating surface wave starting models, Geophys. J. Int., 196(3), 1724-1741.
  49. Obrebski, M., Allen, R.M., Pollitz, F. & Hung, S.-H., 2011. Lithosphere- asthenosphere interaction beneath the western United States from the joint inversion of body-wave traveltimes and surface-wave phase velocities, Geophys. J. Int., 185(2), 1003-1021.
  50. Obrebski, M., Allen, R.M., Zhang, F., Pan, J., Wu, Q. & Hung, S.-H., 2012. Shear wave tomography of China using joint inversion of body and surface wave constraints, J. geophys. Res., 117(B1), B01311, doi:10.1029/2011JB008349.
  51. Paige, C.C. & Saunders, M.A., 1982. LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Softw., 8(1), 43- 71.
  52. Patriat, P. & Achache, J., 1984. India-Eurasia collision chronology has im- plications for crustal shortening and driving mechanism of plates, Nature, 311, 615-621.
  53. Priestley, K. & Tilmann, F.J., 2009. Relationship between the upper mantle high velocity seismic lid and the continental lithosphere, Lithos, 109, 112-124.
  54. Priestley, K., Debayle, E., McKenzie, D. & Pilidou, S., 2006. Upper mantle structure of eastern Asia from multimode surface waveform tomography, J. geophys. Res., 111(B10), B10304, doi:10.1029/2005JB004082.
  55. Rapine, R., Tilmann, F., West, M., Ni, J. & Rodgers, A., 2003. Crustal struc- ture of northern and southern Tibet from surface wave dispersion analysis, J. geophys. Res.: Sol. Earth, 108, 2120, doi:10.1029/2001JB000445.
  56. Rawlinson, N. & Fishwick, S., 2012. Seismic structure of the southeast Australian lithosphere from surface and body wave tomography, Tectono- physics, 572-573, 111-122.
  57. Rawlinson, N. & Kennett, B., 2008. Teleseismic tomography of the up- per mantle beneath the southern Lachlan Orogen, Australia, Phys. Earth planet. Inter., 167(1-2), 84-97.
  58. Rawlinson, N., Pozgay, S. & Fishwick, S., 2010a. Seismic tomography: a window into deep Earth, Phys. Earth planet. Inter., 178(3-4), 101-135.
  59. Rawlinson, N., Tkalčić, H. & Reading, A.M., 2010b. Structure of the Tasmanian lithosphere from 3D seismic tomography, Aust. J. Earth Sci., 57(4), 381-394.
  60. Ren, Y. & Shen, Y., 2008. Finite frequency tomography in southeastern Tibet: evidence for the causal relationship between mantle lithosphere delamination and the north-south trending rifts, J. geophys. Res.: Sol. Earth, 113, B10316, doi:10.1029/2008JB005615.
  61. Ritzwoller, M.H., Shapiro, N.M., Barmin, M.P. & Levshin, A.L., 2002. Global surface wave diffraction tomography, J. geophys. Res., 107(B12), doi:10.1029/2002JB001777.
  62. Schmid, C., van der Lee, S., VanDecar, J.C., Engdahl, E.R. & Giardini, D., 2008. Three-dimensional S velocity of the mantle in the Africa-Eurasia plate boundary region from phase arrival times and regional waveforms, J. geophys. Res., 113(B3), B03306, doi:10.1029/2005JB004193.
  63. Shapiro, N.M. & Ritzwoller, M.H., 2002. Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle, Geophys. J. Int., 151, 88-105.
  64. Shedlock, K.M. & Roecker, S.W., 1987. Elastic wave velocity structure of the crust and upper mantle beneath the North China Basin, J. geophys. Res: Sol. Earth, 92(B9), 9327-9350.
  65. Stephens, C. & Isacks, B.L., 1977. Toward an understanding of Sn: normal modes of love waves in an oceanic structure, Bull. seism. Soc. Am., 67(1), 69-78.
  66. Styron, R., Taylor, M. & Okoronkwo, K., 2010. Database of active structures from the Indo-Asian collision, EOS, Trans. Am. geophys. Un., 91(20), 181-182.
  67. Tapponnier, P., Zhiqin, X., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G. & Jingsui, Y., 2001. Oblique stepwise rise and growth of the Tibet plateau, Science, 294, 1671-1677.
  68. Taylor, M. & Yin, A., 2009. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism, Geosphere, 5(3), 199-214.
  69. Tilmann, F. & Ni, J. the INDEPTH III Seismic Team, 2003. Seismic imaging of the downwelling Indian lithosphere beneath central Tibet, Science, 300, 1424-1427.
  70. VanDecar, J.C. & Crosson, R., 1990. Determination of teleseismic rela- tive phase arrival times using multi-channel cross correlation and least squares, Bull. seism. Soc. Am., 80, 150-169.
  71. van Hinsbergen, D.J.J., Steinberger, B., Doubrovine, P.V. & Gassmöller, R., 2011. Acceleration and deceleration of India-Asia convergence since the Cretaceous: roles of mantle plumes and continental collision, J. geophys. Res., 116(B6), B06101, doi:10.1029/2010JB008051.
  72. Waldhauser, F., Lippitsch, R., Kissling, E. & Ansorge, J., 2002. High- resolution teleseismic tomography of upper-mantle structure using an a priori three-dimensional crustal model, Geophys. J. Int., 150, 403-414.
  73. Wessel, P. & Smith, W.H.F., 1998. New, improved version of generic mapping tools released, EOS, Trans. Am. geophys. Un., 79(47), 579.
  74. West, M., Gao, W. & Grand, S., 2004. A simple approach to the joint inversion of seismic body and surface waves applied to the southwest U.S., Geophys. Res. Lett., 31(15), L15615, doi:10.1029/2004GL020373.
  75. Wittlinger, G. et al., 1996. Seismic tomography of northern Tibet and Kunlun: evidence for crustal blocks and mantle velocity contrasts, Earth planet. Sci. Lett., 139, 263-279.
  76. Yang, Y., Ritzwoller, M.H., Zheng, Y., Shen, W., Levshin, A.L. & Xie, Z., 2012. A synoptic view of the distribution and connectivity of the mid- crustal low velocity zone beneath Tibet, J. geophys. Res.: Sol. Earth, 117(B4), B04303, doi:10.1029/2011JB008810.
  77. Yin, A., 2000. Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision, J. geophys. Res., 105(B9), 21 745-21 759.
  78. Yin, A. & Harrison, T.M., 2000. Geologic evolution of the Himalayan- Tibetan Orogen, Ann. Rev. Earth planet. Sci., 28(1), 211-280.
  79. Yue, H. et al., 2012. Lithospheric and upper mantle structure of the northeastern Tibetan Plateau, J. geophys. Res., 117(B5), B05307, doi:10.1029/2011JB008545.
  80. Zhang, H., Zhao, D., Zhao, J. & Xu, Q., 2012a. Convergence of the Indian and Eurasian plates under eastern Tibet revealed by seis- mic tomography, Geochem. Geophys. Geosyst., 13, Q06W14, doi: 10.1029/2012GC004031.
  81. Zhang, H., Zhao, J. & Xu, Q., 2012b. Crustal and upper mantle veloc- ity structure beneath central Tibet by P-wave teleseismic tomography, Geophys. J. Int., 190(3), 1325-1334.
  82. Zhao, W. et al., 2011. Tibetan plate overriding the Asian plate in central and northern Tibet, Nat. Geosci., 4(12), 870-873.