XMM-NEWTON FINDS THAT SAX J1750.8–2900 MAY HARBOR THE HOTTEST, MOST LUMINOUS KNOWN NEUTRON STAR (original) (raw)

Further Constraints on Thermal Quiescent X-Ray Emission from Sax J1808.4-3658

The Astrophysical Journal, 2009

We observed SAX J1808.4-3658 (1808), the first accreting millisecond pulsar, in deep quiescence with XMM-Newton and (near-simultaneously) Gemini-South. The X-ray spectrum of 1808 is similar to that observed in quiescence in 2001 and 2006, describable by an absorbed power-law with photon index 1.74 ± 0.11 and unabsorbed X-ray luminosity L X = 7.9 ± 0.7 × 10 31 ergs s −1 , for N H = 1.3 × 10 21 cm −2. Fitting all the quiescent XMM-Newton X-ray spectra with a power-law, we constrain any thermally emitting neutron star with a hydrogen atmosphere to have a temperature less than 30 eV and L N S (0.01-10 keV)< 6.2 × 10 30 ergs s −1. A thermal plasma model also gives an acceptable fit to the continuum. Adding a neutron star component to the plasma model produces less stringent constraints on the neutron star; a temperature of 36 +4 −8 eV and L N S (0.01-10 keV)= 1.3 +0.6 −0.8 × 10 31 ergs/s. In the framework of the current theory of neutron star heating and cooling, the constraints on the thermal luminosity of 1808 and 1H 1905+000 require strongly enhanced cooling in the cores of these neutron stars. We compile data from the literature on the mass transfer rates and quiescent thermal flux of the largest possible sample of transient neutron star LMXBs. We identify a thermal component in the quiescent spectrum of the accreting millisecond pulsar IGR J00291+5934, which is consistent with the standard cooling model. The contrast between the cooling rates of IGR J00291+5934 and 1808 suggests that 1808 may have a significantly larger mass. This can be interpreted as arising from differences in the binary evolution history or initial neutron star mass in these otherwise similar systems.

The Mass and the Radius of the Neutron Star in the Transient Low-Mass X-Ray Binary Sax J1748.9–2021

The Astrophysical Journal, 2013

We use time resolved spectroscopy of thermonuclear X-ray bursts observed from SAX J1748.9−2021 to infer the mass and the radius of the neutron star in the binary. Four X-ray bursts observed from the source with RXTE enable us to measure the angular size and the Eddington limit on the neutron star surface. Combined with a distance measurement to the globular cluster NGC 6440, in which SAX J1748.9−2021 resides, we obtain two solutions for the neutron star radius and mass, R = 8.18 ± 1.62 km and M = 1.78 ± 0.3 M ⊙ or R = 10.93 ± 2.09 km and M = 1.33 ± 0.33 M ⊙ .

SAX J1808.4-3657 in quiescence: A keystone for neutron star science

2008

The accreting millisecond pulsar SAX J1808.4-3658 may be a transition object between accreting X-ray binaries and millisecond radio pulsars. We have constrained the thermal radiation from its surface through XMM-Newton X-ray observations, providing strong evidence for neutrino cooling processes from the neutron star core. We have also undertaken simultaneous X-ray and optical (Gemini) observations, shedding light on whether the strong heating of the companion star in quiescence may be due to X-ray irradiation, or to a radio pulsar turning on when accretion stops.

Constraints on Thermal X‐Ray Radiation from SAX J1808.4−3658 and Implications for Neutron Star Neutrino Emission

The Astrophysical Journal, 2007

Thermal X-ray radiation from neutron star soft X-ray transients in quiescence provides the strongest constraints on the cooling rates of neutron stars, and thus on the interior composition and properties of matter in the cores of neutron stars. We analyze new (2006) and archival (2001) XMM-Newton observations of the accreting millisecond pulsar SAX J1808.4-3658 in quiescence, which provide the most stringent constraints to date. The X-ray spectrum of SAX J1808.4-3658 in the 2006 observation is consistent with a power-law of photon index 1.83 ± 0.17, without requiring the presence of a blackbody-like component from a neutron star atmosphere. Our 2006 observation shows a slightly lower 0.5-10 keV X-ray luminosity, at a level of 68 +15 −13 % that inferred from the 2001 observation. Simultaneous fitting of all available XMM data allows a constraint on the quiescent neutron star (0.01-10 keV) luminosity of L NS < 1.1 × 10 31 erg s −1. This limit excludes some current models of neutrino emission mediated by pion condensates, and provides further evidence for additional cooling processes, such as neutrino emission via direct Urca processes involving nucleons and/or hyperons, in the cores of massive neutron stars. Subject headings: binaries : X-rays-dense matter-neutrinos-stars: neutron 1 Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA

Thermal states of coldest and hottest neutron stars in soft X-ray transients

Astronomy and Astrophysics, 2004

We calculate the thermal structure and quiescent thermal luminosity of accreting neutron stars (warmed by deep crustal heating in accreted matter) in soft X-ray transients (SXTs). We consider neutron stars with nucleon and hyperon cores and with accreted envelopes. It is assumed that an envelope has an outer helium layer (of variable depth) and deeper layers of heavier elements, either with iron or with much heavier nuclei (of atomic weight A 100) on the top . The relation between the internal and surface stellar temperatures is obtained and fitted by simple expressions. The quiescent luminosity of the hottest (low-mass) and coldest (high-mass) neutron stars is calculated, together with the ranges of its possible variations due to variable thickness of the helium layer. The results are compared with observations of SXTs, particularly, containing the coldest (SAX J1808.4-3658) and the hottest (Aql X-1) neutron stars. The observations of SAX J1808.4-3658 in a quiescent state on March 24, 2001 can be explained only if this SXT contains a massive neutron star with a nucleon/hyperon core; a hyperon core with a not too low fraction of electrons is preferable. Future observations may discriminate between the various models of hyperon/nucleon dense matter. The thermal emission of SAX J1808.4-3658 is also sensitive to the models of plasma ionization in the outermost surface layers and can serve for testing such models.

A Firm Upper Limit to the Radius of the Neutron Star in SAX J1808.4−3658

The Astrophysical Journal, 1998

We show that observations of X-ray pulsing from SAX J1808.4-3658 place a firm upper limit of 13.8m 1/3 km on the radius of the neutron star, where m is its mass in solar units. The limit is independent of distance or assumptions about the magnetospheric geometry, and could be significantly tightened by observations of the pulsations in the near future. We discuss the implications for the equation of state and the possible neutron star mass.

An [ITAL]XMM-Newton[/ITAL] Study of the 401 H[CLC]z[/CLC] Accreting Pulsar SAX J1808.4−3658 in Quiescence

Astrophysical Journal, 2002

SAX J1808.4-3658 is a unique source being the first Low Mass X-ray Binary showing coherent pulsations at a spin period comparable to that of millisecond radio pulsars. Here we present an XMM-Newton observation of SAX J1808.4-3658 in quiescence, the first which assessed its quiescent luminosity and spectrum with good signal to noise. XMM-Newton did not reveal other sources in the vicinity of SAX J1808.4-3658 likely indicating that the source was also detected by previous BeppoSAX and ASCA observations, even if with large positional and flux uncertainties. We derive a 0.5-10 keV unabsorbed luminosity of L X = 5 × 10 31 erg s −1 , a relatively low value compared with other neutron star soft X-ray transient sources. At variance with other soft X-ray transients, the quiescent spectrum of SAX J1808.4-3658 was dominated by a hard (Γ ∼ 1.5) power law with only a minor contribution ( < ∼ 10%) from a soft black body component. If the power law originates in the shock between the wind of a turned-on radio pulsar and matter outflowing from the companion, then a spin-down to X-ray luminosity conversion efficiency of η ∼ 10 −3 is derived; this is in line with the value estimated from the eclipsing radio pulsar PSR J1740-5340. Within the deep crustal heating model, the faintness of the blackbody-like component indicates that SAX J1808.4-3658 likely hosts a massive neutron star (M > ∼ 1.7 M ⊙ ).

An XMM-Newton Study of the 401 Hz Accreting Pulsar SAX J1808.4-3658 in Quiescence

Journal of Quaternary Science, 2002

SAX J1808.4-3658 is a unique source being the first Low Mass X-ray Binary showing coherent pulsations at a spin period comparable to that of millisecond radio pulsars. Here we present an XMM-Newton observation of SAX J1808.4-3658 in quiescence, the first which assessed its quiescent luminosity and spectrum with good signal to noise. XMM-Newton did not reveal other sources in the vicinity of SAX J1808.4-3658 likely indicating that the source was also detected by previous BeppoSAX and ASCA observations, even if with large positional and flux uncertainties. We derive a 0.5-10 keV unabsorbed luminosity of L_X=5x10^{31} erg/s, a relatively low value compared with other neutron star soft X-ray transient sources. At variance with other soft X-ray transients, the quiescent spectrum of SAX J1808.4-3658 was dominated by a hard (Gamma~1.5) power law with only a minor contribution (<10%) from a soft black body component. If the power law originates in the shock between the wind of a turned-on radio pulsar and matter outflowing from the companion, then a spin-down to X-ray luminosity conversion efficiency of eta~10^{-3} is derived; this is in line with the value estimated from the eclipsing radio pulsar PSR J1740-5340. Within the deep crustal heating model, the faintness of the blackbody-like component indicates that SAX J1808.4-3658 likely hosts a massive neutronstar (M>1.7 solar masses).

The Variable Quiescent X-Ray Emission of the Transient Neutron Star XTE J1701-462

Advances in Colloid and Interface Science, 2011

We present the results of continued monitoring of the quiescent neutron star low-mass X-ray binary XTE J1701-462 with Chandra and Swift. A new Chandra observation from 2010 October extends our tracking of the neutron star surface temperature from ~800 days to ~1160 days since the end of an exceptionally luminous 19 month outburst. This observation indicates that the neutron star crust may still be slowly cooling toward thermal equilibrium with the core; another observation further into quiescence is needed to verify this. The shape of the overall cooling curve is consistent with that of a broken power law, although an exponential decay to a constant level cannot be excluded with the present data. To investigate possible low-level activity, we conducted a monitoring campaign of XTE J1701-462 with Swift during 2010 April-October. Short-term flares - presumably arising from episodic low-level accretion - were observed up to a luminosity of ~1e35 erg/s, ~20 times higher than the normal quiescent level. We conclude that flares of this magnitude are not likely to have significantly affected the equilibrium temperature of the neutron star and are probably not able to have a measurable impact on the cooling curve. However, it is possible that brighter and longer periods of low-level activity have had an appreciable effect on the equilibrium temperature.

The Variable Quiescent X-Ray Emission of the Neutron Star Transient XTE J1701-462

2010

We present the results of continued monitoring of the quiescent neutron star low-mass X-ray binary XTE J1701-462 with Chandra and Swift. A new Chandra observation from 2010 October extends our tracking of the neutron star surface temperature from ~800 days to ~1160 days since the end of an exceptionally luminous 19 month outburst. This observation indicates that the neutron star crust may still be slowly cooling toward thermal equilibrium with the core; another observation further into quiescence is needed to verify this. The shape of the overall cooling curve is consistent with that of a broken power law, although an exponential decay to a constant level cannot be excluded with the present data. To investigate possible low-level activity, we conducted a monitoring campaign of XTE J1701-462 with Swift during 2010 April-October. Short-term flares - presumably arising from episodic low-level accretion - were observed up to a luminosity of ~1e35 erg/s, ~20 times higher than the normal quiescent level. We conclude that flares of this magnitude are not likely to have significantly affected the equilibrium temperature of the neutron star and are probably not able to have a measurable impact on the cooling curve. However, it is possible that brighter and longer periods of low-level activity have had an appreciable effect on the equilibrium temperature.