A Decoupling Derivative-Based Approach for Hammerstein System Identification (original) (raw)

This paper proposes a non iterative algorithm for the identification of Hammerstein model, using the sampled output data obtained from the step response, giving a continuoustime model for the linear part and a point-wise estimation of the nonlinear one. Key in the derivation of the results is the algebraic derivative method in the frequency domain yielding exact formula in terms of multiple integrals of the output signal, when placed in the time domain. By investigating the connection between such integrals and parameters to be estimated, a set of three linear regression equations is proposed. The first equation is used to estimate the structure of poles in the linear part, the second to estimate a point of the nonlinearity, the third to estimate the structure of zeros in the linear part. No a priori knowledge of the structure of the nonlinearity is required. The proposed algorithm is numerically robust, since it is based only on least squares estimation. Simulation results validate the proposed algorithm.