2012 Chin. Med. J. Roldan-Valadez-2 (original) (raw)

Diffusion tensor imaging-derived measures of fractional anisotropy across the pyramidal tract are influenced by the cerebral hemisphere but not by gender in young healthy volunteers: a split-plot factorial analysis of variance

Chinese medical journal, 2012

Diffusion tensor imaging (DTI) permits quantitative examination within the pyramidal tract (PT) by measuring fractional anisotropy (FA). To the best of our knowledge, the inter-variability measures of FA along the PT remain unexplained. A clear understanding of these reference values would help radiologists and neuroscientists to understand normality as well as to detect early pathophysiologic changes of brain diseases. The aim of our study was to calculate the variability of the FA at eleven anatomical landmarks along the PT and the influences of gender and cerebral hemisphere in these measurements in a sample of young, healthy volunteers. A retrospective, cross-sectional study was performed in twenty-three right-handed healthy volunteers who underwent magnetic resonance evaluation of the brain. Mean FA values from eleven anatomical landmarks across the PT (at centrum semiovale, corona radiata, posterior limb of internal capsule (PLIC), mesencephalon, pons, and medulla oblongata) w...

Reproducibility, Interrater Agreement, and Age-Related Changes of Fractional Anisotropy Measures at 3T in Healthy Subjects: Effect of the Applied b-Value

American Journal of Neuroradiology, 2008

BACKGROUND AND PURPOSE: There is no reproducibility study of fractional anisotropy (FA) measurements at 3T using regions of interest (ROIs). Our purpose was to establish the extent and statistical significance of the interrater variability, the variability observed with 2 different b-values, and in 2 separate scanning sessions. MATERIALS AND METHODS: Twelve healthy volunteers underwent MR imaging twice. MR imaging was performed on a 3T unit, and FA maps were analyzed independently by 2 observers using ROIs positioned in the corpus callosum, internal capsules, corticospinal tracts, and right thalamus. Changes in FA values (ϫ10 3) measured with 2 b-values (700 and 1000 s/mm 2), age-related differences, interobserver agreement, and measurement reproducibility were assessed. RESULTS: In the right internal capsule genu (FA ϭ 702/728; b ϭ 1000/700 s/mm 2) and the left anterior limb of the internal capsule (AIC; FA ϭ 617/745; b ϭ 1000/700 s/mm 2), the FA values were significantly different between the 2 b-values (P ϭ .02 and .05, respectively). Significant age-related differences in FA were observed in the genu of the corpus callosum and in the left AIC. Interrater measurements showed fair-to-moderate agreement for most anatomic structures. The lowest significant change for a single subject regarding any FA values between the 2 sessions was in the corpus callosum (4%), whereas the highest one was in the corticospinal tracts (27%). The Bland-Altman plot analysis showed that the 1000-s/mm 2 b-value gave satisfactorily reproducible measurements equally good or better than the 700-s/mm 2 b-value. CONCLUSION: The reproducibility of FA estimates using ROIs was satisfactory. Measurements with a b-value at 1000 s/mm 2 showed superior reproducibility in most anatomic locations.

Repeatability and variation of region-of-interest methods using quantitative diffusion tensor MR imaging of the brain

BMC Medical Imaging, 2012

Background: Diffusion tensor imaging (DTI) is increasingly used in various diseases as a clinical tool for assessing the integrity of the brain's white matter. Reduced fractional anisotropy (FA) and an increased apparent diffusion coefficient (ADC) are nonspecific findings in most pathological processes affecting the brain's parenchyma. At present, there is no gold standard for validating diffusion measures, which are dependent on the scanning protocols, methods of the softwares and observers. Therefore, the normal variation and repeatability effects on commonly-derived measures should be carefully examined. Methods: Thirty healthy volunteers (mean age 37.8 years, SD 11.4) underwent DTI of the brain with 3T MRI. Region-of-interest (ROI) -based measurements were calculated at eleven anatomical locations in the pyramidal tracts, corpus callosum and frontobasal area. Two ROI-based methods, the circular method (CM) and the freehand method (FM), were compared. Both methods were also compared by performing measurements on a DTI phantom. The intra-and inter-observer variability (coefficient of variation, or CV%) and repeatability (intra-class correlation coefficient, or ICC) were assessed for FA and ADC values obtained using both ROI methods.

The Influence of Spatial Registration on Detection of Cerebral Asymmetries Using Voxel-Based Statistics of Fractional Anisotropy Images and TBSS

PLoS ONE, 2012

The sensitivity of diffusion tensor imaging (DTI) for detecting microstructural white matter alterations has motivated the application of voxel-based statistics (VBS) to fractional anisotropy (FA) images (FA-VBS). However, detected group differences may depend on the spatial registration method used. The objective of this study was to investigate the influence of spatial registration on detecting cerebral asymmetries in FA-VBS analyses with reference to data obtained using Tract-Based Spatial Statistics (TBSS). In the first part of this study we performed FA-VBS analyses using three single-contrast and one multi-contrast registration: (i) whole-brain registration based on T2 contrast, (ii) whole-brain registration based on FA contrast, (iii) individual-hemisphere registration based on FA contrast, and (iv) a combination of (i) and (iii). We then compared the FA-VBS results with those obtained from TBSS. We found that the FA-VBS results depended strongly on the employed registration approach, with the best correspondence between FA-VBS and TBSS results when approach (iv), the ''multi-contrast individual-hemisphere'' method was employed. In the second part of the study, we investigated the spatial distribution of residual misregistration for each registration approach and the effect on FA-VBS results. For the FA-VBS analyses using the three single-contrast registration methods, we identified FA asymmetries that were (a) located in regions prone to misregistrations, (b) not detected by TBSS, and (c) specific to the applied registration approach. These asymmetries were considered candidates for apparent FA asymmetries due to systematic misregistrations associated with the FA-VBS approach. Finally, we demonstrated that the ''multi-contrast individual-hemisphere'' approach showed the least residual spatial misregistrations and thus might be most appropriate for cerebral FA-VBS analyses.

Possible confounding factors on cerebral diffusion tensor imaging measurements

Acta radiologica open, 2015

Diffusion tensor imaging (DTI) is prone to numerous systemic confounding factors that should be acknowledged to avoid false conclusions. To investigate the possible effects of age, gender, smoking, alcohol consumption, and education on cerebral DTI parameters in a generally healthy homogenous sample with no neurological or psychiatric diseases. Forty (n = 40) subjects (mean age, 40.3 years; SD, 12.3) underwent brain DTI with 3 T magnetic resonance imaging (MRI). At enrolment, all the subjects were interviewed with respect to general health, education, history of smoking, and alcohol consumption. Studied DTI parameters included: (i) fractional anisotropy (FA); and (ii) apparent diffusion coefficient (ADC). Region-of-interest (ROI)-based measurements were estimated at 13 anatomical locations bilaterally on the axial images, except for the corpus callosum in which the ROIs were placed on the sagittal images. Circular ROI measurements were mainly used. Freehand ROI method was used with ...

Reliability of the freehand region-of-interest method in quantitative cerebral diffusion tensor imaging

BMC Medical Imaging

Background Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique used for evaluating changes in the white matter in brain parenchyma. The reliability of quantitative DTI analysis is influenced by several factors, such as the imaging protocol, pre-processing and post-processing methods, and selected diffusion parameters. The region-of-interest (ROI) method is most widely used of the post-processing methods because it is found in commercial software. The focus of our research was to study the reliability of the freehand ROI method using various intra- and inter-observer analyses. Methods This study included 40 neurologically healthy participants who underwent diffusion MRI of the brain with a 3 T scanner. The measurements were performed at nine different anatomical locations using a freehand ROI method. The data extracted from the ROIs included the regional mean values, intra- and inter-observer variability and reliability. The used DTI parameters were fractio...

Retrospective head motion correction approaches for diffusion tensor imaging: Effects of preprocessing choices on biases and reproducibility of scalar diffusion metrics

Journal of Magnetic Resonance Imaging, 2015

Purpose: To evaluate how retrospective head motion correction strategies affect the estimation of scalar metrics commonly used in clinical diffusion tensor imaging (DTI) studies along with their across-session reproducibility errors. Materials and Methods: Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and their respective across-session reproducibility errors were measured on a 4T test-retest dataset of healthy participants using five processing pipelines. These differed in: 1) the number of b0 volumes used for motion correction reference (one or five); 2) the estimations of the gradient matrix rotation (based on 6 or 12 degrees of freedom derived from coregistration); and 3) the software packages used (FSL or DTIPrep). Biases and reproducibility were evaluated in three regions of interest (ROIs) (bilateral arcuate fasciculi, cingula, and the corpus callosum) and also at the full brain level with tract based skeleton images. Results: Preprocessing choices affected DTI measures and their reproducibility. The DTIPrep pipeline exhibited higher DTI metrics: FA/MD and AD (P < 0.05) relative to FSL pipelines both at the ROI and full brain level, and lower RD estimates (P < 0.05) at the ROI level. Within FSL pipelines no such effects were found (P-values ranging between 0.25 and 0.97). The DTIPrep pipeline showed the highest number of white matter skeleton voxels, with significantly higher reproducibility (P < 0.001) relative to the other pipelines (tested on P < 0.01 uncorrected maps). Conclusion: The use of an iteratively averaged b0 image as motion correction reference (as performed by DTIPrep) affects both scalar values and improves test-retest reliability relative to the other tested pipelines. These considerations are potentially relevant for data analysis in longitudinal DTI studies.

Reproducibility and biases in high field brain diffusion MRI: An evaluation of acquisition and analysis variables

Diffusion tensor imaging (DTI) of in-vivo human brain provides insights into white matter anatomical connectivity, but little is known about measurement difference biases and reliability of data obtained with last generation high field scanners (N3 T) as function of MRI acquisition and analyses variables. Here we assess the impact of acquisition (voxel size: 1.8 × 1.8 × 1.8, 2 × 2 × 2 and 2.5 × 2.5 × 2.5 mm 3 , b-value: 700, 1000 and 1300 s/mm 2 ) and analysis variables (within-session averaging and co-registration methods) on biases and test-retest reproducibility of some common tensor derived quantities like fractional anisotropy (FA), mean diffusivity (MD), axial and radial diffusivity in a group of healthy subjects at 4 T in three regions: arcuate fasciculus, corpus callosum and cingulum. Averaging effects are also evaluated on a full-brain voxel based approach. The main results are: i) group FA and MD reproducibility errors across scan sessions are on average double of those found in within-session repetitions (≈1.3 %), regardless of acquisition protocol and region; ii) within-session averaging of two DTI acquisitions does not improve reproducibility of any of the quantities across sessions at the group level, regardless of acquisition protocol; iii) increasing voxel size biased MD, axial and radial diffusivities to higher values and FA to lower values; iv) increasing b-value biased all quantities to lower values, axial diffusivity showing the strongest effects; v) the two co-registration methods evaluated gave similar bias and reproducibility results. Altogether these results show that reproducibility of FA and MD is comparable to that found at lower fields, not significantly dependent on pre-processing and acquisition protocol manipulations, but that the specific choice of acquisition parameters can significantly bias the group measures of FA, MD, axial and radial diffusivities.

Reproducibility of quantitative fiber tracking measurements in diffusion tensor imaging of frontal lobe tracts: A protocol based on the fiber dissection technique

Surgical Neurology International, 2013

Background: Diffusion tensor imaging (DTI)-based tractography is a noninvasive in vivo method for tracing white matter bundles. This raises possibilities for qualitative and quantitative assessment of the structural organization of tracts. Nevertheless, questions remain about neuroanatomical accuracy, reproducibility for clinical purposes, and accessibility of the best method for broader application. The aim of this study was to combine the fiber dissection technique and tractography to provide more pertinent insight into brain anatomy and, as a result, to test a protocol for reconstruction of six major frontal lobe tracts. Methods: A combination of fiber dissection of formalin-fixed brain tissue after freezing (Klingler's technique) and virtual dissection (tractography) was used to develop a protocol to reconstruct major frontal tracts. Apparent diffusion coefficient (ADC), fractional anisotropy (FA), number of voxels (NVO), volume (VOL), number (NTR), and length (LEN) of tracts were evaluated to assess intra-and interobserver reproducibility. Statistical reliability was evaluated using intraclass correlation coefficients (ICCs) and the Pearson association coefficient (r). Results: The virtual dissection obtained by tractography seemed to reproduce the anatomic knowledge of the white matter tracts obtained through the classic method. In reliability study, most ICC and r values corresponded at least to large correlation. The magnitude of correlation was very high (ICC 0.7-0.9) or almost perfect (ICC 0.9-1.0) for the FA and ADC measures of every tract studied. Conclusion: The DTI protocol proposed herein provided a reliable method for analysis of reconstructed frontal lobe tracts, especially for the FA and ADC variables.