No-Flow Ischemia Inhibits Insulin Signaling in Heart by Decreasing Intracellular pH (original) (raw)

Abstract

sparkles

AI

No-flow ischemia significantly impairs insulin signaling in the heart through a reduction in intracellular pH. The study focuses on the insulin response of ischemic myocardial tissue, challenging the conventional measurement methods that do not accurately reflect insulin action during ischemic conditions. By examining the insulin signaling pathway, specifically the activation of protein kinase B (PKB), the research highlights key differences in metabolic regulation under ischemic stress and the potential mechanisms by which ischemia modulates insulin-mediated effects.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (35)

  1. Maroko PR, Libby P, Sobel BE, Bloor CM, Sybers HD, Shell WE, Covell JW, Braunwald E. Effect of glucose-insulin-potassium infusion on myo- cardial infarction following experimental coronary artery occlusion. Cir- culation. 1972;45:1160 -1175.
  2. Diaz R, Paolasso EA, Piegas LS, Tajer CD, Moreno MG, Corvalan R, Isea JE, Romero G on behalf of the ECLA collaborative group. Metabolic modulation of acute myocardial infarction. The ECLA Glucose-Insulin- Potassium Pilot Trial. Circulation. 1998;98:2227-2234.
  3. Vanoverschelde JLJ, Janier MF, Bakke JE, Marshall DR, Bergmann SR. Rate of glycolysis during ischemia determines extent of ischemic injury and functional recovery after reperfusion. Am J Physiol. 1994;267: H1785-H1794.
  4. Apstein CS, Gravino FN, Haudenschild CC. Determinants of a protective effect of glucose and insulin on the ischemic myocardium. Circ Res. 1983;52:515-526.
  5. Egert S, Nguyen N, Brosius FC, Schwaiger M. Effects of wortmannin on insulin-and ischemia-induced stimulation of GLUT-4 translocation and FDG uptake in perfused rat hearts. Cardiovasc Res. 1997;35:283-293.
  6. Sun DQ, Nguyen N, DeGrado TR, Schwaiger M, Brosius FC. Ischemia induces translocation of the insulin-responsive glucose transporter GLUT4 to the plasma membrane of cardiac myocytes. Circulation. 1994; 89:793-798.
  7. Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, Vincent MF, Van den Berghe G, Carling D, Hue L. Phosphorylation and activation of heart PFK-2 by AMPK plays a role in the stimulation of glycolysis during ischaemia. Curr Biol. 2000;10:1247-1255.
  8. Russel RR, Bergeron R, Shulman GI, Young LH. Translocation of myo- cardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol. 1999;277:H643-H649.
  9. Vanhaesebroeck B, Alessi DR. The PI3K-PDK-1 connection: more than just a road to PKB. Biochem J. 2000;346:561-576.
  10. Wang Q, Somwar R, Bilan PJ, Liu Z, Jin J, Woodgett JR, Klip A. Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myo- blasts. Mol Cell Biol. 1999;19:4008 -4018.
  11. Bertrand L, Alessi DR, Deprez J, Deak M, Viaene E, Rider MH, Hue L. Heart 6-phosphofructo-2-kinase activation by insulin results from Ser466 and Ser483 phosphorylation and requires 3-phosphoinositide-dependent kinase-1, but not protein kinase B. J Biol Chem. 1999;43:30927-30933.
  12. Matsui T, Li L, del Monte F, Fukui Y, Franke TF, Hajjar RJ, Rosenzweig A. Adenoviral gene transfer of activated phosphatidylinositol 3-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circu- lation. 1999;23:2373-2379.
  13. Lefèbvre V, Méchin MC, Louckx MP, Rider MH, Hue L. Signaling pathway involved in the activation of heart 6-phosphofructo-2-kinase by insulin. J Biol Chem. 1996;271:22289 -22292.
  14. Depré C, Rider MH, Veitch K, Hue L. Role of fructose 2,6-bisphosphate in the control of heart glycolysis. J Biol Chem. 1993;268:13274 -13279.
  15. Soto GE, Zhu Z, Evelhoch JL, Ackerman JJH. Tumor 31 P NMR pH measurements in vivo: a comparison of inorganic phosphate and intra- cellular 2-deoxyglucose-6-phosphate as pH NMR indicators in murine radiation-induced fibrosarcoma. Magn Reson Med. 1996;36:698 -704.
  16. Deprez J, Bertrand L, Alessi DR, Krause U, Hue L, Rider MH. Partial purification and characterization of a wortmannin-sensitive and insulin- stimulated protein kinase that activates heart 6-phosphofructo-2-kinase.
  17. Biochem J. 2000;347:305-312.
  18. Krause U, Rider MH, Hue L. Protein kinase signaling pathway triggered by cell swelling and involved in the activation of glycogen synthase and acetyl-CoA carboxylase in isolated rat hepatocytes. J Biol Chem. 1996; 271:16668 -16673.
  19. Van Lint J, Khandelwal RL, Merlevede W, Vandenheede JR. A specific immunoprecipitation assay for the protein kinase F(A)/glycogen synthase kinase-3. Anal Biochem. 1993;208:132-137.
  20. Pike LJ, Eakes AT, Krebs EG. Characterization of affinity-purified insulin receptor/kinase: effects of dithiothreitol on receptor/kinase function. J Biol Chem. 1986;261:3782-3789.
  21. Tanti JF, Grémeaux T, Rochet N, Van Obberghen E, Le Marchand- Brustel Y. Effect of cyclic AMP-dependent protein kinase on insulin receptor tyrosine kinase activity. Biochem J. 1987;245:19 -26.
  22. Walker KS, Deak M, Paterson A, Hudson K, Cohen P, Alessi DR. Activation of protein kinase B␤ and ␥ isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B␣. Biochem J. 1998;331:299 -308.
  23. Kudo N, Gillespie JG, Kung L, Witters LA, Schulz R, Clanachan AS, Lopaschuk GD. Characterization of 5ЈAMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia. Biochem Biophys Acta. 1996; 1301:67-75.
  24. Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, Fuller SJ, Ben-Levy R, Ashworth A, Marshall CJ, Sugden PH. Stimulation of the stress- activated mitogen-activated protein kinase subfamilies in perfused heart: p38/RK mitogen-activated protein kinases and c-jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res. 1996;79:162-173.
  25. Weiss RG, Lakatta EG, Gerstenblith G. Effects of amiloride on metabolism and contractility during reoxygenation in perfused rat hearts. Circ Res. 1990;66:1012-1022.
  26. Chen W, Wetsel W, Steenbergen C, Murphy E. Effect of ischemic preconditioning and PKC activation on acidification during ischemia in rat heart. J Mol Cell Cardiol. 1996;28:871-880.
  27. Lotan CS, Miller SK, Pohost GM, Elgavish GA. Amiloride in ouabain- induced acidification, inotropy and arrhythmia: 23 Na and 31 P NMR in perfused hearts. J Mol Cell Cardiol. 1992;24:243-257.
  28. Whittaker J, Cuthbert C, Hammond VA, Alberti KGMM. The effects of metabolic acidosis in vivo on insulin binding to isolated rat adipocytes. Metabolism. 1982;31:553-557.
  29. Fantus IG, Ahmad F, Deragon G. Vanadate augments insulin-stimulated insulin receptor kinase activity and prolongs insulin action in rat adi- pocytes. Diabetes. 1994;43:375-383.
  30. Del Aguila LF, Claffey KP, Kirwan JP. TNF-␣ impairs insulin signaling and insulin stimulation of glucose uptake in C 2 C 12 muscle cells. Am J Physiol. 1999;276:E849 -E855.
  31. Chen D, Fucini RV, Olson AL, Hemmings BA, Pessin JE. Osmotic shock inhibits insulin signaling by maintaining Akt/protein kinase B in an inactive dephosphorylated state. Mol Cell Biol. 1999;19:4684 -4694.
  32. Issad T, Combettes M, Ferre P. Isoproterenol inhibits insulin-stimulated tyrosine phosphorylation of the insulin receptor without increasing its serine/threonine phosphorylation. Eur J Biochem. 1995;234:108 -115.
  33. Kitakaze M, Weisfeldt ML, Marbán E. Acidosis during early reperfusion prevents myocardial stunning in perfused ferret hearts. J Clin Invest. 1988;82:920 -927.
  34. Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia- reperfusion injury in mouse heart. Circulation. 2000;101:660 -667.
  35. Doenst T, Richwine RT, Bray MS, Goodwin GW, Frazier OH, Taegtmeyer H. Insulin improves functional and metabolic recovery of reperfused working rat heart. Ann Thorac Surg. 1999;67:1682-1688.