Evaluation of the Osteogenic Performance of Calcium Phosphate-Chitosan Bone Fillers (original) (raw)
Related papers
Bone remodeling effect of a chitosan and calcium phosphate-based composite
Regenerative Biomaterials, 2019
Chitosan is a biocompatible polymer that has been widely studied for tissue engineering purposes. The aim of this research was to assess bone regenerative properties of an injectable chitosan and calcium phosphate-based composite and identify optimal degree of deacetylation (%DDA) of the chitosan polymer. Drill holes were generated on the left side of a mandible in Sprague-Dawley rats, and the hole was either left empty or filled with the implant. The animals were sacrificed at several time points after surgery (7–22 days) and bone was investigated using micro-CT and histology. No significant new bone formation was observed in the implants themselves at any time points. However, substantial new bone formation was observed in the rat mandible further away from the drill hole. Morphological changes indicating bone formation were found in specimens explanted on Day 7 in animals that received implant. Similar bone formation pattern was seen in control animals with an empty drill hole at...
Osteogenesis promoted by calcium phosphate N,N-dicarboxymethyl chitosan
Carbohydrate Polymers, 1998
The effects of N,N-dicarboxymethyl chitosan (DCMC) on the precipitation of insoluble calcium salts, namely phosphate, sulfate, oxalate, carbonate, bicarbonate and fluoride, and magnesium salts, namely phosphate and carbonate, were studied. Results indicated that the chelating ability of DCMC interfered effectively with the well-known physico-chemical behaviour of magnesium and calcium salts. Dicarboxymethyl chitosan formed self-sustaining gels upon mixing with calcium acetate, as a consequence of calcium chelation. DCMC mixed with calcium acetate and with disodium hydrogen phosphate in appropriate ratios (molar ratio Ca/DCMC close to 2.4) yielded a clear solution, from which, after dialysis and freeze-drying, an amorphous material was isolated containing an inorganic component about one half its weight. This compound was used for the treatment of bone lesions in experimental surgery and in dentistry. Bone tissue regeneration was promoted in sheep, leading to complete healing of otherwise non-healing surgical defects. Radiographic evidence of bone regeneration was observed in human patients undergoing apicectomies and avulsions. The DCMC-CaP chelate favoured osteogenesis while promoting bone mineralization.
Vascularization of an artificial graft represents one of the most significant challenges facing the field of bone tissue engineering. Over the past decade, strategies to vascularize artificial scaffolds have been intensively evaluated using osteoinductive calcium phosphate (CaP) biomaterials in animal models. In this work, we observed that CaP-based biomaterials implanted into rat calvarial defects showed remarkably accelerated formation and mineralization of new woven bone in defects in the initial stages, at a rate of *60 mm/day (0.8mg/day), which was considerably higher than normal bone growth rates (several mm/day, 0.1mg/day) in implant-free controls of the same age. Surprisingly, we also observed histological evidence of primary osteon formation, indicated by blood vessels in early-region fibrous tissue, which was encapsulated by lamellar osteocyte structures. These were later fully replaced by compact bone, indicating complete regeneration of calvarial bone. Thus, the CaP biomaterial used here is not only osteoinductive, but vasculogenic, and it may have contributed to the bone regeneration, despite an absence of osteons in normal rat calvaria. Further investigation will involve how this strategy can regulate formation of vascularized cortical bone such as by control of degradation rate, and use of models of long, dense bones, to more closely approximate repair of human cortical bone.
CALCIUM PHOSPHATE-CHITOSAN COMPOSITE AS A BONE CEMENT CANDIDATE
A research about study of surface chemistry and morphology of bone cement from calcium phosphate-chitosan composite has been conducted. Surface chemistry and morphology of an artificial bone is directly influence to the osteoinductivity property. Calcium phosphate compounds as powder phase was reacted to liquid phase that contains of Na 2 HPO 4 solution and chitosan. Analysis instruments such as XRD and SEM-EDS were used to identify surface chemistry, morphology and structural transformation of cement. Setting time and hardening time were tested to know the feasibility of cement when used in minimally invasive surgery technique. The results showed that setting time of calcium phosphate cement became shorter as well hardening time became longer by the increasing of liquid/ powder (L/P) ratio and chitosan concentration. SEM image of calcium phosphate showed cuboid crystal shape. The transformation of calcium phosphate into CPC and composite were not changing it structure and morphology. The change only happen on calcium phosphate surface that caused by deposition of phosphate ions. It can be concluded that calcium phosphate – chitosan composite has osteoinductive property and can be used as bone cement.
Journal of Orthopaedic Surgery and Research, 2019
Background: Polymethylmethacrylate bone cement has a variety of applications in orthopedic surgery, but it also has some shortcomings such as high heat generation during polymerization and poor integration with bone tissue. In this study, a bio-composite bone cement composed of tri-calcium phosphate and chitosan as additives to acrylic bone cement was developed. Our hypothesis is that this new bio-composite bone cement has a better osteointegration than pure polymethyl methacrylate cement. Methods: Physiological composition, i.e., 65 wt% inorganic and 35 wt% organic components, of tri-calcium phosphate and chitosan contents was selected as degradable additives to replace acrylic bone cement. A series of properties such as exothermic temperature changes, setting time, bio-mechanical characteristics, degradation behaviors, and in vitro cytotoxicity were examined. Preliminary in vivo animal study was also performed. Results: The results showed that the bio-composite bone cement exhibited lower curing temperature, longer setting time, higher weight loss and porosity after degradation, lower compressive Young's modulus, and ultimate compressive strength as compared with those of pure polymethyl methacrylate cement. Cell proliferation tests demonstrated that the bio-composite bone cement was non-cytotoxic, and the in vivo tests revealed that was more osteo-conductive. Conclusions: The results indicated that the modified chitosan/tri-calcium phosphate/polymethyl methacrylate biocomposites bone cement could be degraded gradually and create rougher surfaces that would be beneficial to cell adherence and growth. This new bio-composite bone cement has potential in clinical application. Our future studies will focus on long-term implantation to investigate the stability of the bio-composite bone cement in longterm implantation.
In vitro biocompatibility of chitosan/hyaluronic acid-containing calcium phosphate bone cements
Bioprocess and Biosystems Engineering, 2014
The need for bone repair has increased as the population ages. In this research, calcium phosphate cements, with and without chitosan (CS) and hyaluronic acid (HA), were synthesized. The composition and morphological properties of cements were evaluated by X-ray diffraction and scanning electron microscopy. The acellular in vitro bioactivity revealed that different apatite morphologies were formed on the surfaces of cements after soaking in simulated body fluid. The in vitro osteoblastic cell biocompatibility of in situ forming cements was evaluated and compared with those of conventional calcium phosphate cements (CPCs). The viability and growth rate of the cells were similar for all CPCs, but better alkaline phosphatase activity was observed for CPC with CS and HA. Calcium phosphate cements supported attachment of osteoblastic cells on their surfaces. Spindleshaped osteoblasts with developed cytoplasmic membrane were found on the surfaces of cement samples after 7 days of culture. These results reveal the potential of the CPC-CS/HA composites to be used in bone tissue engineering.
Novel injectable calcium phosphate/chitosan composites for bone substitute materials
Acta Biomaterialia, 2006
In this study, a novel injectable bone substitute material was developed which consists of chitosan, citric acid and glucose solution as the liquid phase, and tricalcium phosphate powder as the solid phase. This material was moldable because of its paste consistency after mixing. We used four groups of cement to investigate the mechanical properties and biocompatibility of the new biomaterial in vitro, which were named group A (10% citric acid), B (15% citric acid), C (20% citric acid) and D (25% citric acid). The setting times of the cements were 5-30 min. X-ray diffraction analysis showed that the products were hydroxyapatite (HA) and dicalcium phosphate anhydrous. When the concentration of citric acid was increased, the compressive strength of specimen increased. Through the simulated body fluid test, we observed the material was bioactive. Group D could induce Ca and P ions to deposit the surface group D quickly. These results indicated that the concentration of citric acid in the liquid component affected the mechanical properties and bioactivity of cements. The cell cultivation test showed that the cytocompatibility of the new biomaterial was good. The method for preparing the novel bone substitute material is simple. The starting material is more readily available and cheaper than HA, poly(methyl methacrylate), and so on. The cement could have good prospects for medical application.
Synthesis of calcium-phosphate and chitosan bioceramics for bone regeneration
Anais da Academia Brasileira de Ciências, 2001
Bioceramic composites were obtained from chitosan and hydroxyapatite pastes synthesized at physiological temperature according to two different syntheses approaches. Usual analytical techniques (X-ray diffraction analysis, Fourier transformed infrared spectroscopy, Thermo gravimetric analysis, Scanning electron microscopy, X-ray dispersive energy analysis and Porosimetry) were employed to characterize the resulting material. The aim of this investigation was to study the bioceramic properties of the pastes with non-decaying behavior from chitosan-hydroxyapatite composites. Chitosan, which also forms a water-insoluble gel in the presence of calcium ions, and has been reported to have pharmacologically beneficial effects on osteoconductivity, was added to the solid phase of the hydroxyapatite powder. The properties exhibited by the chitosan-hydroxyapatite composites were characteristic of bioceramics applied as bone substitutes. Hydroxyapatite contents ranging from 85 to 98% (w/w) res...
Journal of Biomedical …, 2012
A novel biomimetic technique for obtaining chitosan-calcium phosphates (Cs-CP) scaffolds are presented: calcium phosphates are precipitated from its precursors, CaCl 2 and NaH 2 PO 4 on the Cs matrix, under physiological conditions (human body temperature and body fluid pH; 37 o C and pH ¼ 7.2, respectively). Materials composition and structure have been confirmed by various techniques: elemental analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). FTIR and SEM data have shown the arrangement of the calcium phosphates-hydroxyapatite (CP-Hap) onto Cs matrix. In this case the polymer is acting as glue, bonding the calcium phosphates crystals. Behavior in biological simulated fluids (phosphate buffer solution-PBS and PBS-albumin) revealed an important contribution of the chelation between ÀNH þ 3 and Ca 2þ on the scaffold interaction with aqueous mediums; increased quantities of chitosan in composites permit the interaction with human albumin and improve the retention of fluid. The composites are slightly degraded by the lysozyme which facilitates an in vivo degradation control of bone substitutes. Modulus of elasticity is strongly dependent of the ratio chitosan/calcium phosphates and recommends the obtained biomimetic composites as promising materials for a prospective bone application. V C 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B: 700-708, 2012. How to cite this article: Tanase CE, Popa MI, Verestiuc L. 2012. Biomimetic chitosan-calcium phosphate composites with potential applications as bone substitutes: Preparation and characterization. J Biomed Mater Res Part B 2012:100B:700-708.