Formation of Ephemeral Bedform Turrets in Coastal Foredunes (original) (raw)
Related papers
Sedimentology, 2000
The internal structure of coastal foredunes from three sites along the north Norfolk coast has been investigated using ground-penetrating radar (GPR), which provides a unique insight into the internal structure of these dunes that cannot be achieved by any other non-destructive or geophysical technique. Combining geomorphological and geophysical investigations into the structure and morphology of these coastal foredunes has enabled a more accurate determination of their development and evolution. The radar profiles show the internal structures, which include foreslope accretion, trough cut and fill, roll-over and beach deposits. Foredune ridges contain large sets of low-angle cross-stratification from dune foreslope accretion with trough-shaped structures from cut and fill on the crest and rearslope. Foreslope accretion indicates sand supply from the beach to the foreslope, while troughs on the dune crest and rearslope are attributed to reworking by offshore winds. Bounding surfaces between dunes are clearly resolved and reveal the relative chronology of dune emplacement. Radar sequence boundaries within dunes have been traced below the water-table passing into beach erosion surfaces. These are believed to result from storm activity, which erodes the upper beach and dunes. In one example, at Brancaster, a dune scarp and erosion surface may be correlated with erosion in the 1950s, possibly the 1953 storm. Results suggest that dune ridge development is intimately linked to changes in the shoreline, with dune development associated with coastal progradation while dunes are eroded during storms and, where beaches are eroding, a stable coast provides more time for dune development, resulting in higher foredune ridges. A model for coastal dune evolution is presented, which illustrates stages of dune development in response to beach evolution and sand supply. In contrast to many other coastal dune fields where the prevailing wind is onshore, on the north Norfolk coast, the prevailing wind is directed along the coast and offshore, which reduces the landward migration of sand dunes.
Coastal dune dynamics in response to excavated foredune notches
Dune management along developed coasts has traditionally focussed on the suppression of the geomor-phic dynamics of the foredune to improve its role in sea defence. Because a stabilized foredune acts as an almost total barrier to aeolian transport from the beach, the habitat diversity in the more landward dunes has degraded. With the overarching objective to mitigate this undesirable loss in biodiversity, dune management projects nowadays increasingly intend to restore aeolian dynamics by reconnecting the beach-dune system with notches excavated through the foredune. Here, we use repeat topographic survey data to examine the geomorphic response of a coastal dune system in the Dutch National Park Zuid-Kennemerland to five notches excavated in 2012–2013 within an 850-m stretch of the 20-m high established foredune. The notches were dug in a V-shape (viewed onshore), with a width between approximately 50 and 100 m at the top, a (cross-dune) length between 100 and 200 m, and excavation depths between 9 and 12.5 m. The 1 Â 1 m digital terrain models, acquired with airborne Lidar and UAV photogrammetry, illustrate that during the 3-year survey period the notches developed into a U-shape because of wall deflation, and that up to 8-m thick and 150-m long depositional lobes formed landward of the notches. Sand budget computations showed that the sand volume of the entire study area increased by about 22,750 m 3 /year, which, given the 850-m width of the study area, corresponds to an aeolian input from the beach of approximately 26.5 m 3 /m/year. Between 2006 and 2012 all wind-blown beach sand deposited on the seaward side of the foredune; since 2013, the notches have caused 75% of the sand to be deposited landward of the foredune. This highlights that the notches are highly effective conduits for aeolian transport into the back dunes. Future monitoring is required to determine for how long the notches will stimulate aeolian dynamics and if (and when) vegetation eventually starts to regrow and enforces the degeneration of the notches.