Visual acuity of neurones in the cat lateral suprasylvian cortex (original) (raw)

The fine structure of the receptive fields of visually driven neurons in the cat's lateral suprasylvian area

Acta neurobiologiae experimentalis, 1986

The fine structure of the receptive fields of the lateral suprasylvian area neurons was investigated in the pretrigeminal cat preparation. A majority of the receptive fields consisted of subregions with different qualitative characteristics according to their response to moving visual stimuli. There was an asymmetry in the spatial distribution of inhibitory mechanisms over the receptive field. The steady illumination of the receptive field usually enhanced the inhibitory processes, whereas darkness, decreased the effectivity of inhibitory influences on the neuron. Some receptive fields of neurons reacted vigorously to the motion of borders of visual stimuli. It is suggested that the differences in response patterns to moving stimuli depend in part on the heterogenous fine structure of their receptive fields.

Spatial frequency processing in posteromedial lateral suprasylvian cortex does not depend on the projections from the striate-recipient zone of the cat's lateral posterior-pulvinar complex

Neuroscience, 1998

It is generally considered that the posteromedial part of the cat's lateral suprasylvian cortex is involved in the analysis of image motion. The main afferents of the posteromedial lateral suprasylvian cortex come from a direct retinogeniculate pathway and indirect retinotectal and retino-geniculo-cortical pathways. Removal of the primary visual cortex does not affect the spatial and temporal processing of suprasylvian cortex cells suggesting that these properties are derived from thalamic input. We have investigated the possibility that the striate-recipient zone of the lateral posterior nucleus-pulvinar complex may be responsible for the spatial (and temporal) frequency processing in posteromedial lateral suprasylvian cortex since these two regions establish strong bidirectional connections and share many visual properties. Experiments were done on anaesthetized normal adult cats. Visual responses in suprasylvian cortex were recorded before, during, and after the deactivation of the lateral part of the lateral posterior nucleus accomplished by the injection of lidocaine or GABA. Results can be summarized as follows. A total of 64 cells was tested. Out of this number, 11 units were affected by the deactivation of the lateral part of lateral posterior nucleus and one cell, by the blockade of pulvinar. For all cells, except one, the effect consisted in a global reduction of the evoked discharge rate suggesting that the thalamo-suprasylvian cortex projections are excitatory in nature. We did not find any significant differences in the optimal spatial frequency, nor in the width of the tuning function, whether the grating was presented at half-or saturation contrast. In addition, there were no significant differences between the low-and high cut-off spatial frequency values computed before and after the deactivation of the lateral posterior nucleus. No specific changes were observed in the contrast sensitivity function of the posteromedial lateral suprasylvian cortex cells. Similar results were observed with respect to the temporal frequency tuning functions. Deactivating the lateral posterior nucleus did not modify the direction selectivity nor the organization of the subregions of the lateral suprasylvian cortex ''classical'' receptive fields.

Are neurons in cat posteromedial lateral suprasylvian visual cortex orientation sensitive? Tests with bars and gratings

Visual Neuroscience, 1995

There is controversy in the literature concerning whether or not neurons in the cat's posteromedial lateral suprasylvian (PMLS) visual cortex are orientation selective. Previous studies that have tested cells with simple bar stimuli have found that few, if any, PMLS cells are orientation selective. Conversely, studies that have used repetitive stimuli such as gratings have found that most or all PMLS cells are orientation selective. It is not known whether this difference in results is due to the stimuli used or the laboratories using them. The present experiments were designed to answer this question by testing individual PMLS neurons for orientation sensitivity with both bar and grating stimuli. Using quantitative response measures, we found that most PMLS neurons respond well enough to stationary flashed stimuli to use such stimuli to test for orientation sensitivity. On the basis of these tests, we found that about 85% of the cells with well-defined receptive fields are orie...

Thalamic control of cat lateral suprasylvian visual area: Relation to patchy association projections from area 18

Visual Neuroscience, 1998

In this study, we examined functional contributions of major subdivisions of the lateral geniculate nucleus to the cat's lateral suprasylvian visual area (LS) in relation to the patchy horizontal distributions of association inputs. Multiple-unit activity driven via the contralateral eye was assessed during reversible blockade of the retinotopically corresponding part of layer A, the C layers as a group, or the medial interlaminar nucleus (MIN). Inactivating each of these targets reduced activity at some cortical sites, with inactivation of layer A having, on average, the largest effect. Activity was rarely abolished by inactivation of a single target, indicating that most LS sites receive multiple inputs. Dependence on layer A was strongly correlated with the horizontal distribution of association inputs from area 18. Closely spaced injections of anatomical tracers into extensive regions of area 18 resulted in patches of terminal label in lateral suprasylvian cortex. Activity i...

Intracortical connections of the anterior ectosylvian and lateral suprasylvian visual areas in the cat

Brain Research, 1985

Key words: cortical visual area --interhemispheric connection --cat --fluorescent retrograde tracer lntra-and interhemispheric connections between the anterior ectosylvian visual area (AEV) and other visual cortical areas including the lateral suprasylvian (LSS) were examined in the cat using the retrograde double-label fluorescence technique. The areal and laminar distributions of labeled neurons were mapped following injections of different tracers: Evans Blue (EB), Fast Blue (FB) and Nuclear Yellow (NY) made separately into AEV and LSS of the same or opposite hemispheres. The results indicated: (1) reciprocal and bilateral AEV-LSS connections stemming from layers V and VI in addition to a predominant efferent LSS projection upon AEV from both layer III and the posterior lateral (PLLS) subdivision of LSS; (2) homotopic interhemispheric connections to AEV arising from layers III, V and VI and from layers III and V of ipsilateral areas 20 and 21a; (3) differential laminar distributions of the cell populations projecting to the two cortical sites injected including neurons in layer III of LSS which project to contralateral LSS and AEV of either hemisphere via collateral axon branching (double-labeled). The anatomical findings support the functional similarities between AEV and LSS and the possible role of AEV in interhemispheric transfer of visual information is discussed.

Spatial and temporal visual properties of single neurons in the feline anterior ectosylvian visual area

Experimental Brain Research, 2003

The spatial and temporal visual sensitivity to drifting sinusoidal gratings was studied in 75 neurons of the feline anterior ectosylvian visual area (AEV). Extracellular single-unit recordings were performed in halothane-anesthetized (0.6%), immobilized, artificially ventilated cats. Most cells were strongly sensitive to the direction of drifting gratings. The mean value of the direction tuning widths was approximately 90 deg. Most of the cells (69 of the 75 cases) displayed rather narrowly tuned band-pass characteristics in the low spatial frequency range, with a mean optimal spatial frequency of 0.2 cycles/degree (c/deg). The mean spatial bandwidth was 1.4 octaves. The remainder of the units was low-pass tuned. A majority of the units responded optimally to high temporal frequencies (mean 6.3 Hz), although some cells did exhibit preferences for every examined temporal frequency between 0.6 Hz and 10.8 Hz. The temporal frequency-tuning functions mostly revealed a band-pass character with a mean temporal bandwidth of 1.1 octaves. Our results demonstrate that the neurons along the anterior ectosylvian sulcus display particular spatial and temporal characteristics. The AEV neurons, with their preference for low spatial frequencies and with their fine spatial and temporal tuning properties, seem to be candidates for special tasks in motion perception.