The Bearing Surfaces in Total Hip Arthroplasty – Options, Material Characteristics and Selection (original) (raw)

Bearing surfaces in hip replacement- Evolution and likely future

Medical Journal Armed Forces India, 2014

Total hip arthroplasty has evolved from the first total hip arthroplasty in 1938, through the revolutionization of hip arthroplasty by principles of low friction arthroplasty introduced by Sir John Charnley in 1960s to the present state of the art implants and techniques. The main concern regarding failure of total hip arthroplasty has been the biological response to particulate polyethylene debris generated by conventional metal on polyethylene bearing surfaces leading to osteolysis and aseptic loosening of the prosthesis. Therefore, recent research has been focussing on alternative bearing surfaces to reduce the particulate debris generated. These bearing surfaces include ceramic-polyethylene, metal-metal as well as ceramic-ceramic articulations and have demonstrated lesser friction rates as well as significantly lower wear rates as compared to widely used metal on polyethylene surfaces. Clinical experience until now has shown that metal on metal articulations have significant safety concerns whereas metal-on-highly crosslinked polyethylene, ceramic on ceramic and ceramic on highly crosslinked polyethylene articulations have shown encouraging results to hold promise for wider use in younger and more active patients. This review article discusses positives and drawbacks of various bearing surfaces in current clinical use in total hip arthroplasty as well as briefly explores the newer technologies on the horizon which may even further decrease wear and improve total hip arthroplasty survivorship.

Outcome analysis of various bearing surface materials used in total hip replacement

Materials Express, 2020

Since the first total hip replacement (THR) in 1938 by Philip Wiles, prosthesis materials and THR surgical technologies have developed rapidly. In this review, we use internationally-published research to synthesize a comprehensive analysis of the specific characteristics and clinical outcomes of different bearing surfaces used in THR. Polyethylene, metallic alloys, and ceramic have become the three most commonly used hip prosthesis bearing surfaces after decades of hip implant development. Different bearing surface types have varying characteristics that offer specific benefits and risks of complication. A thorough understanding of the unique properties and possible complications of each type of bearing surface is critical to surgeons tasked with selecting appropriate implant materials for total hip replacement.

The effect of bearing type on the outcome of total hip arthroplasty

Acta orthopaedica, 2017

Background and purpose - Alternative bearing surfaces such as ceramics and highly crosslinked polyethylene (HXLPE) were developed in order to further improve implant performance of total hip arthroplasties (THAs). Whether these alternative bearing surfaces result in increased longevity is subject to debate. Patients and methods - Using the Dutch Arthroplasty Register (LROI), we identified all patients with a primary, non-metal-on-metal THA implanted in the Netherlands in the period 2007-2016 (n = 209,912). Cumulative incidence of revision was calculated to determine differences in survivorship of THAs according to bearing type: metal-on-polyethylene (MoPE), metal-on-HXLPE (MoHXLPE), ceramic-on-polyethylene (CoPE), ceramic-on-HXLPE (CoHXLPE), ceramic-on-ceramic (CoC), and oxidized-zirconium-on-(HXL)polyethylene (Ox(HXL)PE). Multivariable Cox proportional hazard regression ratios (HRs) were used for comparisons. Results - After adjustment for confounders, CoHXLPE, CoC, and Ox(HXL)PE r...

Ceramic Bearings for Total Hip Arthroplasty Have High Survivorship at 10 Years

Clinical Orthopaedics and Related Research®, 2012

Background Ceramic bearings were introduced to reduce wear and increase long-term survivorship of total hip arthroplasty. In a previous study comparing ceramic with metal-on-polyethylene at 5 to 8 years, we found higher survivorship and no osteolysis for the ceramic bearings. Questions/Purposes We asked whether ceramic bearings have equal or superior survivorship compared with that for metal-on-polyethylene at longer followup; we also determined survivorship of the implant systems, the presence or absence of radiographic osteolysis, and incidence of device squeaking.

Long-duration metal-on-metal total hip arthroplasties with low wear of the articulating surfaces

The Journal of Arthroplasty, 1996

The 20-year performance of metal-on-metal hip articulations has not been reported. Five McKee-Farrar total hip prostheses and one Sivash prosthesis were obtained at revision surgery after a mean implantation time of 21.3 years. A radiographic, histologic, implant, and wear analysis was performed on these total hip implants with cobalt-chrome metal-on-metal articulations. All cases were associated with femoral component loosening, but the bearing surfaces performed remarkably well. The worst case estimate of combined femoral and acetabular linear wear was 4.2 gm per year, about 25 times less than that typically seen with polyethylene. Metal particles and foreign-body inflammation were seen in all cases, but the volume of reactive tissue was small compared with what is generally seen at revision of hips with a polyethylene acetabular bearing. This may be due to a reduced particle burden or a decreased inflammatory reaction to particulate metal, or both. In addition to articular wear, other sources of metal particles included femoral neck impingement on the acetabular rim, stem burnishing, and corrosion. Prosthetic hip reconstructions can fail for many reasons, including suboptimal femoral stem and/or acetabular cup design and/or fixation. By today's standards, the McKee-Farrar and Sivash stem and acetabular component designs are suboptimal; however, after more than 20 years of use, the metal-on-metal bearing surfaces in these cases demonstrated low wear and do not appear to be the cause of failure. Recent advances in total hip arthroplasty, which include improved implant design, materials, manufacturing, and fixation, combined with a better understanding of the mechanisms of implant loosening and failure, suggest that the cobalt-chrome metal-on-metal bearing be reexamined as an alternative to polyethylene when exceptional durability is required.

Alternative bearing surfaces: alumina ceramic bearings for total hip arthroplasty

Instructional course lectures, 2005

Osteolysis resulting from polyethylene wear debris is one of the most common causes of implant failure in young, active individuals who undergo total hip arthroplasty. Reducing wear may help extend the life of the implant in these patients. Contemporary alumina ceramic/alumina ceramic bearing articulations are harder, scratch resistant, and more hydrophilic than other bearing couples, resulting in reduced wear and reduction of particle load to the surrounding tissue. Therefore, bearings made of alumina ceramic may be a preferable bearing choice for younger, more active patients. To investigate this hypothesis, 495 patients (514 hips), average age 53 years, were enrolled in a prospective, randomized, multicenter study comparing an alumina-on-alumina ceramic bearing to a cobalt-chromium-on-polyethylene bearing control. At an average of 4 years after implantation, no difference in clinical outcome was observed between groups. There were no fractures of the ceramic head or liner, nor we...

Friction of total hip replacements with different bearings and loading conditions

Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007

Metal-on-ultra-high molecular weight polyethylene (UHMWPE) total hip replacements have been the most popular and clinically successful implants to date. However, it is well documented that the wear debris from these prostheses contributes to osteolysis and ultimate failure of the prosthesis, hence alternative materials have been sought. A range of 28 mm diameter bearings were investigated using a hip friction simulator, including conventional material combinations such as metal-on-UHWMPE, ceramic-on-ceramic (CoC), and metal-onmetal (MoM), as well as novel ceramic-on-metal (CoM) pairings. Studies were performed under different swing-phase load and lubricant conditions. The friction factors were lowest in the ceramic bearings, with the CoC bearing having the lowest friction factor in all conditions. CoM bearings also had low friction factors compared with MoM, and the trends were similar to CoC bearings for all test conditions. Increasing swing phase load was shown to cause an increase in friction factor in all tests. Increased serum concentration resulted in increased friction factor in all material combinations, except MoM, where increased serum concentration produced a significant reduction in friction factor. '