Bead-Based Multiplex Genotyping of 58 Cutaneous Human Papillomavirus Types (original) (raw)
Related papers
Journal of Clinical Microbiology, 2010
A large number of human papillomavirus (HPV) types, distributed over five papillomavirus genera, are detectable in the skin. HPV types belonging to the alpha, gamma, and mu genera have been detected in cutaneous warts. A state-of-the-art HPV genotyping assay for these cutaneous wart-associated HPV types does not exist although warts constitute a highly prevalent skin condition, especially in children (33%) and organ transplant recipients (45%). Cutaneous warts are again the focus of attention as their clinical relevance rises with the increasing number of chronically immunosuppressed patients. The objective of this study was to develop and evaluate a DNA-based genotyping system for all known cutaneous wart-related HPV types using PCR and Luminex xMAP technology. The broad-spectrum PCR amplified DNA of all known wart-associated HPV types from the genera alpha , and nu (HPV41). The probes were evaluated using plasmid HPV DNA and a panel of 45 previously characterized cutaneous wart biopsy specimens showing high specificity. HPV was also identified in 96% of 100 swabs from nongenital cutaneous warts. HPV types 1, 2, 27, and 57 were the most prevalent HPV types detected in 89% of the swabs. In conclusion, this Luminex-based genotyping system identifies all known cutaneous wart HPV types including phylogenetically related types, is highly HPV type specific, and is suitable for large-scale epidemiological studies.
Improved detection of cutaneous human papillomavirus DNA by single tube nested ‘hanging droplet’ PCR
Journal of Virological Methods, 2003
A single tube nested 'hanging droplet' PCR was developed for detection of cutaneous human papillomavirus (HPV) DNA of the phylogenetic group B1. The nested PCR was compared with a single round PCR method by testing 56 fresh biopsies from Australian skin tumour patients. HPV DNA was detected in 64% (36/56) of the biopsies by nested PCR and in 30% (17/56) by single round PCR (P B/0.001). HPV DNA was more often detected by nested PCR than by single round PCR in basal cell carcinoma [62% (16/26) vs. 19%; (5/26); P0/0.003], squamous cell carcinoma [43% (7/16) vs. 25% (4/16)] and in solar keratosis [93% (13/14) vs. 57% (8/14); P0/0.038]. The nested PCR and the single round PCR system detected 26 and 11 different HPV types/putative types/ subtypes, respectively. Multiple types were found in eight samples by the nested PCR and two samples by single round PCR. The nested HPV PCR is more sensitive and capable of amplifying a broad spectrum of HPV types from skin tumours, but further improvements are needed before all HPV infections in skin can be detected by a single assay. #
Journal of Clinical Microbiology, 2007
Emerging lines of evidence indicate that the cutaneous human papillomavirus (HPV) types that belong to the genus Betapapillomavirus (beta HPV) are involved in the development of nonmelanoma skin cancer. Unlike the situation for mucosal HPV types, highly sensitive and reliable methods to identify characterized cutaneous HPV types in a single assay are limited. Here, we describe a novel one-shot method for the detection of all characterized beta HPV types, namely, HPV type 5 (HPV5), 8, 9, 12, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 36, 37, 38, 47, 49, 75, 76, 80, 92, 93, and 96. This assay combines two different techniques: multiplex PCR using HPV type-specific primers for amplification of each E7 gene and array primer extension (APEX) for typing. This method has been validated using clinical samples which were analyzed simultaneously for the presence of cutaneous HPV types by two additional methods, i.e., the FAP59/64 PCR protocol and a commercially available PCR-reverse hybridization assay (PM-PCR RHA). Our data show good agreement between the results obtained with the multiplex PCR/APEX assay and the PM-PCR RHA method (overall HPV positivity of 92.2% for multiplex PCR/APEX assay versus 90.6% with the PM-PCR RHA) (kappa value, 50; 95% confidence interval, 13 to 88). In addition, the multiplex PCR/APEX assay showed higher sensitivity than the PM-PCR RHA did. This favorable feature and the high-throughput potential make this assay ideal for large-scale clinical and epidemiological studies aimed at determining the spectrum of cutaneous types in skin cancer.
Comparison of Two PCR-Based Human Papillomavirus Genotyping Methods
2008
We compared two consensus primer PCR human papillomavirus (HPV) genotyping methods for the detection of individual HPV genotypes and carcinogenic HPV genotypes as a group, using a stratified sample of enrollment cervical specimens from sexually active women participating in the NCI/Costa Rica HPV16/18 Vaccine Efficacy Trial. For the SPF 10 method, DNA was extracted from 0.1% of the cervical specimen by using a MagNA Pure LC instrument, a 65-bp region of the HPV L1 gene was targeted for PCR amplification by using SPF 10 primers, and 25 genotypes were detected by reverse-line blot hybridization of the amplicons. For the Linear Array (LA) method, DNA was extracted from 0.5% of the cervical specimen by using an MDx robot, a 450-bp region of the HPV L1 gene was targeted for PCR amplification by using PGMY09/11 L1 primers, and 37 genotypes were detected by reverse-line blot hybridization of the amplicons. Specimens (n ؍ 1,427) for testing by the LA method were randomly selected from strata defined on the basis of enrollment test results from the SPF 10 method, cytology, and Hybrid Capture 2. LA results were extrapolated to the trial cohort (n ؍ 5,659). The LA and SPF 10 methods detected 21 genotypes in common; HPV16and -73 were considered the carcinogenic HPV genotypes. There was no difference in the overall results for grouped detection of carcinogenic HPV by the SPF 10 and LA methods (35.3% versus 35.9%, respectively; P ؍ 0.5), with a 91.8% overall agreement and a kappa value of 0.82. In comparisons of individual HPV genotypes, the LA method detected significantly more HPV16, HPV18, HPV39, HPV58, HPV59, HPV66, and HPV68/73 and less HPV31 and HPV52 than the SPF 10 method; inclusion of genotype-specific testing for HPV16 and HPV18 for those specimens testing positive for HPV by the SPF 10 method but for which no individual HPV genotype was detected abrogated any differences between the LA and SPF 10 methods. The LA method detected more carcinogenic-HPV-genotype infections per specimen than the SPF 10 method (P < 0.001). In conclusion, the LA method and the SPF 10 method with HPV16 and HPV18 genotype-specific detection among ungenotyped HPV-positive specimens were comparable for detection of HPV16 and HPV18, the two HPV genotypes targeted by current prophylactic HPV vaccines. Both approaches are suitable for monitoring the impact of HPV16/18 vaccines in clinical trials.
Journal of Clinical Microbiology, 2008
We describe here a rapid, high-throughput genotyping procedure that allows the simultaneous detection of 16 high- and low-risk genital human papillomavirus (HPV) types by multiplex PCR in a single reaction tube. Multiplex PCR is based on the amplification of HPV DNA by sets of HPV genotype-specific primers, and the genotypes of HPV are visually identified by the sizes of amplicons after they are separated by capillary electrophoresis. The procedure does not include a hybridization step with HPV-specific probes and is rapid and labor-saving. We detected all 16 HPV genotypes (types 16, 58, 52, 51, 56, 31, 18, 39, 66, 59, 6, 33, 30, 35, 45, and 11) with a high sensitivity and a high degree of reproducibility. By using this newly developed method, we conducted a pilot study to examine the correlation between the prevalence and genotype distributions of HPV and the cytological group classifications for 547 cervical samples. Compared with the group of samples considered normal (14.7%), th...
Journal of Clinical Microbiology, 2006
The importance of assays for the detection and typing of human papillomaviruses (HPVs) in clinical and epidemiological studies has been well demonstrated. Several accurate methods for HPV detection and typing have been developed. However, comparative studies showed that several assays have different sensitivities for the detection of specific HPV types, particularly in the case of multiple infections. Here, we describe a novel one-shot method for the detection and typing of 19 mucosal high-risk (HR) HPV types (types 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73, and 82). This assay combines two different techniques: multiplex PCR with HPV type-specific primers for amplification of viral DNA and array primer extension (APEX) for typing. This novel method has been validated with artificial mixtures of HPV DNAs and clinical samples that were already analyzed for the presence of mucosal HPV types by a different consensus PCR method, i.e., GP5؉/GP6؉. Our data showed a very good agreement between the results from the multiplex PCR/APEX assay and those from the GP5؉/GP6؉ PCR (overall rates of HPV positivity, 63.0 and 60.9%, respectively). Whereas the GP5؉/GP6؉ PCR was slightly more sensitive for the detection of HPV type 16 (HPV-16),
Journal of clinical microbiology, 1998
Amplification of human papillomavirus (HPV) DNA by L1 consensus primer systems (e.g., MY09/11 or GP5(+)/6(+)) can detect as few as 10 to 100 molecules of HPV targets from a genital sample. However, genotype determination by dot blot hybridization is laborious and requires at least 27 separate hybridizations for substantive HPV-type discrimination. A reverse blot method was developed which employs a biotin-labeled PCR product hybridized to an array of immobilized oligonucleotide probes. By the reverse blot strip analysis, genotype discrimination of multiple HPV types can be accomplished in a single hybridization and wash cycle. Twenty-seven HPV probe mixes, two control probe concentrations, and a single reference line were immobilized to 75- by 6-mm nylon strips. Each individual probe line contained a mixture of two bovine serum albumin-conjugated oligonucleotide probes specific to a unique HPV genotype. The genotype spectrum discriminated on this strip includes the high-risk, or can...
Novel polymerase chain reaction method for detecting cutaneous human papillomavirus DNA
Journal of Medical Virology, 2012
There is no simple test to identify the human papillomavirus (HPV) genotypes that cause cutaneous warts. A new polymerase chain reaction (PCR) method, called SK-PCR, was developed for this purpose. This PCR amplifies 210-238 base pairs of L1 DNA of 17 HPV types (HPV--91, and -94), which are thought to cause various cutaneous warts, including common, flat, butcher's, punctate, and pigmented warts. The method is novel because the location of these primers is completely different from that of any previous PCR method for HPV. The target sequences are specific to alpha-, gamma-, and mu-papillomaviruses (PVs), but not to beta-PVs. Furthermore, direct sequencing and restriction fragment length polymorphism (RFLP) were used to determine the HPV genotypes. Fifty of samples of plantar warts were examined, and HPV-27 was identified in 22 warts, HPV-57 in 15 warts, and HPV-2a in 9 warts. These PVs, which are alpha species 4, were the most common. HPV-4 and -65 (gamma-PVs) and HPV-1a and -63 (mu-PVs) were detected in one case each. A single HPV type was identified in all of these warts. This method appears to be useful for genotyping the HPVs causing skin warts, and for distinguishing between HPV-induced warts and warty lesions unrelated to HPV infection.
Detection of cutaneous and genital HPV types in clinical samples by PCR using consensus primers
Journal of Virological Methods, 1993
Two sets of consensus PCR primers consisting of a common 3' primer CP-I and two 5'-primers, CP-IIG (primer set A) and CP-IIS (primer set B), in the El open reading frame of the human papillomavirus (HPV) genome are presented. These two primer sets enabled the detection of a 188 base pair (bp) fragment of and 46. HPV types l&23,49 and 50 were poorly amplified and HPV type 41 was not ampli~ed. The method is suitable for the detection of HPV DNA sequences in clinical samples of both cervical and cutaneous lesions.
Routine human papillomavirus genotyping by DNA sequencing in community hospital laboratories
Infectious Agents and Cancer, 2007
Background: Human papillomavirus (HPV) genotyping is important for following up patients with persistent HPV infection and for evaluation of prevention strategy for the individual patients to be immunized with type-specific HPV vaccines. The aim of this study was to optimize a robust "lowtemperature" (LoTemp™) PCR system to streamline the research protocols for HPV DNA nested PCR-amplification followed by genotyping with direct DNA sequencing. The protocol optimization facilitates transferring this molecular technology into clinical laboratory practice. In particular, lowering the temperature by 10°C at each step of thermocycling during in vitro DNA amplification yields more homogeneous PCR products. With this protocol, template purification before enzymatic cycle primer extensions is no longer necessary. Results: The HPV genomic DNA extracted from liquid-based alcohol-preserved cervicovaginal cells was first amplified by the consensus MY09/MY11 primer pair followed by nested PCR with GP5+/GP6+ primers. The 150 bp nested PCR products were subjected to direct DNA sequencing. The hypervariable 34-50 bp DNA sequence downstream of the GP5+ primer site was compared to the known HPV DNA sequences stored in the GenBank using on-line BLAST for genotyping. The LoTemp™ ready-to-use PCR polymerase reagents proved to be stable at room temperature for at least 6 weeks. Nested PCR detected 107 isolates of HPV in 513 cervicovaginal clinical samples, all validated by DNA sequencing. HPV-16 was the most prevalent genotype constituting 29 of 107 positive cases (27.2%), followed by HPV-56 (8.5%). For comparison, Digene HC2 test detected 62.6% of the 107 HPV isolates and returned 11 (37.9%) of the 29 HPV-16 positive cases as "positive for high-risk HPV". Conclusion: The LoTemp™ ready-to-use PCR polymerase system which allows thermocycling at 85°C for denaturing, 40°C for annealing and 65°C for primer extension can be adapted for target HPV DNA amplification by nested PCR and for preparation of clinical materials for genotyping by direct DNA sequencing. HPV genotyping is performed by on-line BLAST algorithm of a hypervariable L1 region. The DNA sequence is included in each report to the physician for comparison in following up patients with persistent HPV infection, a recognized tumor promoter in cancer induction.