Random Hamiltonians ergodic in all but one direction (original) (raw)
Abstract
Let V^l ) and V^ be two ergodic random potentials on KA We consider the Schrόdinger operator H ω = H 0 + V ω , with H o = -A and for
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (21)
- Avron, J., Simon, B.: Almost periodic Schrόdinger operators. II. The integrated density of states. Duke Math. J. 50, 369-397 (1983)
- Carmona, R.: Random Schrόdinger operators. In: Lecture Notes in Mathematics, vol. 1180. Berlin Heidelberg New York: Springer 1986
- Carmona, R.: One-dimensional Schrόdinger operators with random or deterministic potentials: new spectral types. J. Funct. Anal. 51, 229 (1983)
- Cycon, H., Froese, R., Kirsch, W., Simon, B.: Schrόdinger operators. Berlin Heidelberg New York: Springer 1987
- Davies, E.B., Simon, B.: Scattering theory for systems with different spatial asymptotics on the left and right. Commun. Math. Phys. 63, 277-301 (1978)
- Englisch, H., Kirsch, W., Schroder, M., Simon, B.: Density of surface states in discrete models. Phys. Rev. Lett. 67, 1261-1262 (1988)
- Englisch, J., Kϋrsten, K.D.: Infinite representability of Schrόdinger operators with ergodic potentials. Anal. Auw. 3, 357-366 (1984)
- Englisch, J., Schroder, M.: Bose condensation. II. Surface and bound states. Preprint
- Kirsch, W.: On a class of random Schrόdinger operators. Adv. Appl. Math. 6,177-187 (1985)
- Kirsch, W.: Random Schrόdinger operators and the density of states. In: Lecture Notes in Mathematics, vol. 1109, Berlin Heidelberg New York: Springer 1985
- Kirsch, W., Martinelli, F.: On the ergodic properties of the spectrum of general random operators. J. Reine Angew. Math. 334, 141-156 (1982)
- Kirsch, W., Martinelli, F.: On the spectrum of Schrόdinger operators with a random potential. Commun. Math. Phys. 85, 329 (1982)
- Kirsch, W., Martinelli, F.: On the density of states of Schrόdinger operators with a random potential. J. Phys. A15, 2139-2156 (1982)
- Kunz, H., Souillard, B.: Sur de spectre des operateurs aux differences finies aleatoires. Commun. Math. Phys. 78, 201-246 (1980)
- Molcanov, S.A., Seidel, H.: Spectral properties of the general Sturm-Liouville equation with random coefficient. I. Math. Nacho. 109, 57-58 (1982)
- Pastur, L.: Spectra of random selfadjoint operators. Russ. Math. Surv.28,1-67 (1973)
- Pastur, L.: Spectral properties of disordered systems in one body approximation. Commun. Math. Phys. 75, 178 (1980)
- Reed, M., Simon, B.: Methods of modern mathematical physics. I. Functional analysis (rev. ed.). New York: Academic Press 1980
- Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis self- adjointness. New York: Academic Press 1975
- Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York: Academic Press 1978
- Simon, B.: Schrόdinger semigroups. Bull Am. Math. Soc. 7, 447-526 (1982) Communicated by T. Spencer Received February 13, 1989