Repression of Flagellar Genes in Exponential Phase by CsgD and CpxR, Two Crucial Modulators of Escherichia coli Biofilm Formation (original) (raw)

Multiple Control of Flagellum Biosynthesis in Escherichia coli: Role of H-NS Protein and the Cyclic AMP-Catabolite Activator Protein Complex in Transcription of the flhDC Master Operon

Journal of Bacteriology

Little is known about the molecular mechanism by which histone-like nucleoid-structuring (H-NS) protein and cyclic AMP-catabolite activator protein (CAP) complex control bacterial motility. In the present paper, we show that crp and hns mutants are nonmotile due to a complete lack of flagellin accumulation. This results from a reduced expression in vivo of fliA and fliC, which encode the specific flagellar sigma factor and flagellin, respectively. Overexpression of the flhDC master operon restored, at least in part, motility in crp and hns mutant strains, suggesting that this operon is the main target for both regulators. Binding of H-NS and CAP to the regulatory region of the master operon was demonstrated by gel retardation experiments, and their DNA binding sites were identified by DNase I footprinting assays. In vitro transcription experiments showed that CAP activates flhDC expression while H-NS represses it. In agreement with this observation, the activity of a transcriptional fusion carrying the flhDC promoter was decreased in the crp strain and increased in the hns mutant. In contrast, the activity of a transcriptional fusion encompassing the entire flhDC regulatory region extending to the ATG translational start codon was strongly reduced in both hns and crp mutants. These results suggest that the region downstream of the ؉1 transcriptional start site plays a crucial role in the positive control by H-NS of flagellum biosynthesis in vivo. Finally, the lack of complementation of the nonmotile phenotype in a crp mutant by activation-deficient CAP mutated proteins and characterization of cfs, a mutation resulting in a CAP-independent motility behavior, demonstrate that CAP activates flhDC transcription by binding to its promoter and interacting with RNA polymerase.

FliZ Is a Posttranslational Activator of FlhD4C2-Dependent Flagellar Gene Expression

Journal of Bacteriology, 2008

Flagellar assembly proceeds in a sequential manner, beginning at the base and concluding with the filament. A critical aspect of assembly is that gene expression is coupled to assembly. When cells transition from a nonflagellated to a flagellated state, gene expression is sequential, reflecting the manner in which the flagellum is made. A key mechanism for establishing this temporal hierarchy is the σ28-FlgM checkpoint, which couples the expression of late flagellar (Pclass3) genes to the completion of the hook-basal body. In this work, we investigated the role of FliZ in coupling middle flagellar (Pclass2) gene expression to assembly in Salmonella enterica serovar Typhimurium. We demonstrate that FliZ is an FlhD4C2-dependent activator of Pclass2/middle gene expression. Our results suggest that FliZ regulates the concentration of FlhD4C2 posttranslationally. We also demonstrate that FliZ functions independently of the flagellum-specific sigma factor σ28 and the filament-cap chaperon...

Regulation of FlbD activity by flagellum assembly is accomplished through direct interaction with the trans‐acting factor, FliX

Molecular microbiology, 2004

The temporal and spatial transcription of late flagellar genes in Caulobacter crescentus is regulated by the s s s s 54 transcriptional activator, FlbD. One requirement for FlbD activity is the assembly of a structure encoded by early, class II flagellar genes. In this report, we show that the transacting factor FliX predominantly functions as a negative regulator of FlbD activity in the absence of the class II-encoded flagellar structure. In contrast, a mutant FliX that bypasses the transcriptional requirement for early flagellar assembly is incapable of repressing FlbD in a class II flagellar mutant. Expression of this mutant allele, fliX1 , does not alter the temporal pattern of FlbD-dependent transcription. Remarkably, this mutation confers the correct cell cycle timing of hook operon transcription in a strain that cannot assemble the flagellum, indicating that the progression of flagellar assembly is a minor influence on temporal gene expression. Using a two-hybrid assay, we present evidence that FliX regulates FlbD through a direct interaction, a novel mechanism for this class of s s s s 54 transcriptional activator. Furthermore, increasing the cellular levels of FliX results in an increase in the concentration of FlbD, and a corresponding increase in FlbD-activated transcription, suggesting that FliX and FlbD form a stable complex in Caulobacter. FliX and FlbD homologues are present in several polar-flagellated bacteria, indicating that these proteins constitute an evolutionarily conserved regulatory pair in organisms where flagellar biogenesis is likely to be under control of the cell division cycle.

Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli

Molecular Microbiology, 2001

Many species of bacteria devote considerable metabolic resources and genetic information to the ability to sense the environment and move towards or away from specific stimuli using flagella. In Escherichia coli and related species, motility is regulated by several global regulatory circuits, which converge to modulate the overall expression of the master operon for flagellum biosynthesis, flhDC. We now show that the global regulator CsrA of E. coli K-12 is necessary for motility under a variety of growth conditions, as a result of its role as an activator of flhDC expression. A chromosomally encoded flhDC H ± H lacZ translational fusion was expressed at three-to fourfold higher levels in csrA wild-type strains than in isogenic csrA mutants. Purified recombinant CsrA protein stimulated the coupled transcription-translation of flhDC H ± H lacZ in S-30 extracts and bound to the 5 H segment of flhDC mRNA in RNA mobility shift assays. The steady-state level of flhDC mRNA was higher and its half-life was < threefold greater in a csrA wild-type versus a csrA mutant strain. Thus, CsrA stimulates flhDC gene expression by a post-transcriptional mechanism reminiscent of its function in the repression of glycogen biosynthesis.

The Flagellar Set Fla2 in Rhodobacter sphaeroides Is Controlled by the CckA Pathway and Is Repressed by Organic Acids and the Expression of Fla1

Journal of Bacteriology, 2014

Rhodobacter sphaeroides has two different sets of flagellar genes. Under the growth conditions commonly used in the laboratory, the expression of the fla1 set is constitutive, whereas the fla2 genes are not expressed. Phylogenetic analyses have previously shown that the fla1 genes were acquired by horizontal transfer from a gammaproteobacterium and that the fla2 genes are endogenous genes of this alphaproteobacterium. In this work, we characterized a set of mutants that were selected for swimming using the Fla2 flagella in the absence of the Fla1 flagellum (Fla2 ؉ strains). We determined that these strains have a single missense mutation in the histidine kinase domain of CckA. The expression of these mutant alleles in a Fla1 ؊ strain allowed fla2-dependent motility without selection. Motility of the Fla2 ؉ strains is also dependent on ChpT and CtrA. The mutant versions of CckA showed an increased autophosphorylation activity in vitro. Interestingly, we found that cckA is transcriptionally repressed by the presence of organic acids, suggesting that the availability of carbon sources could be a part of the signal that turns on this flagellar set. Evidence is presented showing that reactivation of fla1 gene expression in the Fla2 ؉ background strongly reduces the number of cells with Fla2 flagella.

Interaction of the Atypical Prokaryotic Transcription Activator FlhD2C2 with Early Promoters of the Flagellar Gene Hierarchy

Journal of Molecular Biology, 2002

The transcriptional activator FlhD 2 C 2 is the master regulator of bacterial flagellum biogenesis and swarming migration, activating the "early" class II promoters of the large flagellar gene hierarchy. Using primer extensions, band-shift assays, and enzymatic and chemical footprinting, we describe the binding of the FlhD 2 C 2 heterotetramer to the promoter regions of four class II flagella operons, fliAZ, flhBA and the divergent flgAMN and flgBCD(EFGHIJ). Each of the promoter regions was bound by a single heterotetramer, i.e. the flgAMN and flgBCD operons are characterised by a single FlhD 2 C 2 binding site. Binding affinity differed, and correlated with previously reported promoter strength and order of activation. Methylation protection and interference, and depurination and depyrimidation interference provided a detailed map of critical bases within a common 46-59 bp DNaseI footprint overlapping the promoter 2 35 sequences. These data and compilation of the 12 known class II promoter sequences of Escherichia coli, Proteus mirabilis and Salmonella typhimurium allowed determination of a FlhD 2 C 2 binding site with pseudo symmetry, comprising two 17-18 bp inverted repeats, each a consensus FlhD 2 C 2 box, separated by a 10-11 bp spacer. DNaseI hypersensitivity indicated that binding may cause a conformational change in the promoter regions. Only the FlhC subunit can bind DNA independently, but the specificity and stability of the interaction is strengthened by FlhD. Here, photo-crosslinking established that both FlhC and the stabilising FlhD contact the DNA within the FlhD 2 C 2 tetramer. Our data suggest that specificity of recognition and stability of the FlhD 2 C 2 /DNA complex require protein-protein interaction and interaction of both FlhC and FlhD subunits with DNA. These characteristics of the FlhD and FlhC subunits in the FlhD 2 C 2 /DNA complex are strikingly atypical of prokaryotic regulators.

The Caulobacter crescentus flagellar gene, fliX, encodes a novel trans‐acting factor that couples flagellar assembly to transcription

Molecular microbiology, 2001

The first flagellar assembly checkpoint of Caulobacter crescentus couples assembly of the early class II components of the basal body complex to the expression of class III and IV genes, which encode extracytoplasmic structures of the flagellum. The transcription of class III/IV flagellar genes is activated by the response regulator factor, FlbD. Gain of function mutations in flbD, termed bfa, can bypass the transcriptional requirement for the assembly of class II flagellar structures. Here we show that the class II flagellar gene fliX encodes a transacting factor that couples flagellar assembly to FlbD-dependent transcription. We show that the overexpression of fliX can suppress class III/IV gene expression in both wild-type and flbD-bfa cells. Introduction of a bfa allele of flbD into cells possessing a deletion in fliX restores motility indicating that FliX is not a structural component of the flagellum, but rather a transacting factor. Furthermore, extragenic motile suppressors which arise in DfliX cells map to the flbD locus. These results indicate that FlbD functions downstream of FliX in activating class III/IV transcription. b-Lactamase fusions to FliX and analysis of cellular fractions demonstrate that FliX is a cytosolic protein that demonstrates some peripheral association with the cytoplasmic membrane. In addition, we have isolated a mutant allele of fliX that exhibits a bfa-like phenotype, restoring flbD-dependent class III/IV transcription in strains that contain mutations in class II flagellar structural genes. Taken together, these results indicated both a positive and negative regulatory function for FliX in coupling the assembly of class II basal body components to gene expression.

The Flagellar Sigma Factor FliA Regulates Adhesion and Invasion of Crohn Disease-associated Escherichia coli via a Cyclic Dimeric GMP-dependent Pathway

Journal of Biological Chemistry, 2007

The invasion of intestinal epithelial cells by the Crohn disease-associated adherent-invasive Escherichia coli (AIEC) strain LF82 depends on surface appendages, such as type 1 pili and flagella. The absence of flagella in the AIEC strain LF82 results in a concomitant loss of type 1 pili. Here, we show that flagellar regulators, transcriptional activator FlhD(2)C(2), and sigma factor FliA are involved in the coordination of flagellar and type 1 pili synthesis. In the deletion mutants lacking these regulators, type 1 pili synthesis, adhesion, and invasion were severely decreased. FliA expressed alone in trans was sufficient to restore these defects in both the LF82-DeltaflhD and LF82-DeltafliA mutants. We related the loss of type 1 pili to the decreased expression of the FliA-dependent yhjH gene in the LF82-DeltafliA mutant. YhjH is an EAL domain phosphodiesterase involved in degradation of the bacterial second messenger cyclic dimeric GMP (c-di-GMP). Increased expression of either yhjH or an alternative c-di-GMP phosphodiesterase, yahA, partially restored type 1 pili synthesis, adhesion, and invasion in the LF82-DeltafliA mutant. Deletion of the GGDEF domain diguanylate cyclase gene, yaiC, involved in c-di-GMP synthesis in the LF82-DeltafliA mutant also partially restored these defects, whereas overexpression of the c-di-GMP receptor YcgR had the opposite effect. These findings show that in the AIEC strain LF82, FliA is a key regulatory component linking flagellar and type 1 pili synthesis and that its effect on type 1 pili is mediated, at least in part, via a c-di-GMP-dependent pathway.