Production and Installation of the LHC Low-$beta$Triplets (original) (raw)

The Construction of the Low-β Triplets for the LHC

Proceedings of the 2005 Particle Accelerator Conference, 2005

The performance of the LHC depends critically on the low-β WULSOHWV ORFDWHG RQ HLWKHU VLGH RI WKH IRXr interaction points. Each triplet consists of four superconducting quadrupole magnets, which must operate reliably at up to 215 T/m, sustain high heat loads and have an excellent field quality. A collaboration between CERN, Fermilab and KEK was set up in 1996 to design and build the triplet systems, and after nine years of joint effort the production will be completed in 2005. We retrace the main events of the project and present the performance of the low-β quadrupoles built by KEK and Fermilab and of other elements of the triplet. The assembly of the first triplet at CERN and plans for tunnel installation and commissioning in the LHC are also reported.

The Construction of the Low-β Triplets for the LHC

2005

The performance of the LHC depends critically on the low-β WULSOHWV ORFDWHG RQ HLWKHU VLGH RI WKH IRXr interaction points. Each triplet consists of four superconducting quadrupole magnets, which must operate reliably at up to 215 T/m, sustain high heat loads and have an excellent field quality. A collaboration between CERN, Fermilab and KEK was set up in 1996 to design and build the triplet systems, and after nine years of joint effort the production will be completed in 2005. We retrace the main events of the project and present the performance of the low-β quadrupoles built by KEK and Fermilab and of other elements of the triplet. The assembly of the first triplet at CERN and plans for tunnel installation and commissioning in the LHC are also reported.

The construction of the low-beta triplets for the LHC

2005

The performance of the LHC depends critically on the low-b triplets, located on either side of the four interaction points. Each triplet consists of four superconducting quadrupole magnets, which must operate reliably at up to 215 T/m, sustain high heat loads and have an excellent field quality. A collaboration between CERN, Fermilab and KEK was set up in 1996 to

Status of the LHC inner triplet quadrupole program at Fermilab

IEEE Transactions on Appiled Superconductivity, 2001

Fermilab, in collaboration with LBNL and BNL, is developing a quadrupole for installation in the interaction region inner triplets of the LHC. This magnet is required to have an operating gradient of 215 T/m across a 70mm coil bore, and operates in superfluid helium at 1.9K. A 2m magnet program addressing mechanical, magnetic, quench protection, and thermal issues associated with the design was completed earlier this year, and production of the first full length, cryostatted prototype magnet is underway. This paper summarizes the conclusions of the 2m program, and the design and status of the first full-length prototype magnet.

Field quality of tbe lhc inner triplet quadrupoles being fabricated at Fermilab

Proceedings of the 2003 Bipolar/BiCMOS Circuits and Technology Meeting (IEEE Cat. No.03CH37440), 2003

Fermilab, as part of the US-LHC Accelerator Project, has designed and is producing superconducting low-beta quadrupole magnets for the Large Hadron Collider (LHC). These 70 mm bore, 5.5 m long magnets operate in superfluid helium at 1.9 K with a maximum operating gradient of 214 T/m. Two quadrupoles, combined with a dipole orbit corrector, form a single LQXB cryogenic assembly, the Q2 optical element of the final focus triplets in the LHC interaction regions. Field quality was measured at room temperature during fabrication of the cold masses as well as at superfluid helium temperature in two thermal cycles for the first LQXB cryogenic assembly. Integral cold measurements were made with a 7.1 m long rotating coil and with a 0.8 m long rotating coil at 8 axial positions and in a range of currents. In addition to the magnetic measurements, this paper reports on the quench performance of the cold masses and on the measurements of their internal alignment.

Magnetic Field Measurements of LHC Inner Triplet Quadrupoles Fabricated at Fermilab

IEEE Transactions on Applied Superconductivity, 2000

Fermilab, as part of the US-LHC Accelerator Project, is producing superconducting low-beta quadrupole magnets for the Large Hadron Collider (LHC). These 5.5 m long magnets are designed to operate in superfluid helium at 1.9 K with a nominal gradient of 205 T/m in the 70 mm bore. Two quadrupoles separated by a dipole orbit corrector in a single cryogenic assembly comprise the Q2 optical elements of the final focus triplets in the LHC interaction regions. The field quality of the quadrupoles is measured at room temperature during construction of the cold masses as well as during cold testing of the cryogenic assembly. We summarize data from the series measurements of the magnets and discuss various topics of interest.

Magnetic Field Measurements of the LHC Inner Triplet Quadrupoles Produced at Fermilab *

2015

Production of 18 superconducting low-beta quadrupoles (MQXB) for the LHC is well advanced. These 5.5 m long magnets are designed to operate at 1.9 K with a peak field gradient of 215 T/m in 70 mm aperture. Two MQXB cold masses with a dipole orbit corrector between them form a single cryogenic unit (LQXB) which is the Q2 optical element of the final focus triplets in the LHC interaction regions. A program of magnetic field quality and alignment measurements of the cold masses is performed at room temperature during magnet fabrication and of the LQXB assembly as well as at superfluid helium temperature. Results of these measurements are summarized in this paper.

Commissioning of the Low- $\beta$ Triplets of the Large Hadron Collider

IEEE Transactions on Applied Superconductivity, 2000

The low-β triplets of the Large Hadron Collider were designed and constructed by a world-wide collaboration officially formed in 1998. Over the course of the following years the collaboration worked to produce the triplet components, including four 215 T/m, 70 mm aperture quadrupoles, a DFBX distribution feedbox, and at the low luminosity interaction points a cold D1 beam separation dipole. In 2005 the first triplet was installed in the LHC tunnel, and at the end of 2007 hardware commissioning of the first triplets started. As of August 2008 five triplets have been successfully powered. This paper documents the processes and experience gained during the commissioning phase of the LHC.

The Construction of the Superconducting Matching Quadrupoles for the LHC Insertions

2006

After several years of effort, the construction of the superconducting matching quadrupoles for the LHC insertions is nearing completion. We retrace the main events of the project from the initial development of the quadrupole magnets of several types to the series production of over 100 complex superconducting magnets, and report on the techniques developed for steering of the production. The main performance parameters for the full series, such as quench training, field quality and magnet geometry are presented. The experience gained in the production of these special superconducting magnets is of considerable value for further development of the LHC insertions.

The HL-LHC Low-β Quadrupole Magnet MQXF: From Short Models to Long Prototypes

IEEE Transactions on Applied Superconductivity, 2019

Among the components to be upgraded in LHC interaction regions for the HiLumi-LHC projects are the inner triplet (or low-β) quadrupole magnets, denoted as Q1, Q2a, Q2b, and Q3. The new quadrupole magnets, called MQXF, are based on Nb3Sn superconducting magnet technology and operate at a gradient of 132.6 T/m with a conductor peak field of 11.4 T. The Q1 and Q3 are composed by magnets (called MQXFA) fabricated by the US Accelerator Upgrade Project (AUP) with a magnetic length of 4.2 m. The Q2a and Q2b consists of magnets (called MQXFB) fabricated by CERN with a magnetic length of 7.15 m. After a series of short models, constructed in close collaboration by the US and CERN, the development program is now entering in the prototyping phase, with CERN on one side and BNL, FNAL, and LBNL on the other side assembling and testing their first long magnets. We provide in this paper a description of the status of the MQXF program, with a summary of the short model test results, including quench performance, and mechanics, and an update on the fabrication, assembly and test of the long prototypes.