Tracking target and distractor processing in visual search: Evidence from human electrophysiology (original) (raw)
Related papers
Journal of experimental psychology. Human perception and performance, 2013
Salient distractors delay visual search for less salient targets in additional-singleton tasks, even when the features of the stimuli are fixed across trials. According to the salience-driven selection hypothesis, this delay is due to an initial attentional deployment to the distractor. Recent event-related potential (ERP) studies found no evidence for salience-driven selection in fixed-feature search, but the methods employed were not optimized to isolate distractor ERP components such as the N2pc and distractor positivity (P D ; indices of selection and suppression, respectively). Here, we isolated target and distractor ERPs in two fixed-feature search experiments. Participants searched for a shape singleton in the presence of a more-salient color singleton (Experiment 1) or for a color singleton in the presence of a less-salient shape singleton (Experiment 2). The salient distractor did not elicit an N2pc, but it did elicit a P D on fast-response trials. Furthermore, distractors had no effect on the timing of the target N2pc. These results indicate that (a) the distractor was prevented from engaging the attentional mechanism associated with N2pc, (b) the distractor did not interrupt the deployment of attention to the target, and (c) competition for attention can be resolved by suppressing locations of irrelevant items on a salience-based priority map.
Effects of task relevance and stimulus-driven salience in feature-search mode
Journal of experimental psychology. Human perception and performance, 2004
Attentional allocation in feature-search mode (W. F. Bacon & H. E. Egeth, 1994) is thought to be solely determined by top-down factors, with no role for stimulus-driven salience. The authors reassessed this conclusion using variants of the spatial cuing and rapid serial visual presentation paradigms developed by C. L. Folk and colleagues (C. L. Folk, R. W. Remington, & J. C. Johnston, 1992; C. L. Folk, A. B. Leber, & H. E. Egeth, 2002). They found that (a) a nonsingleton distractor that possesses the target feature produces attentional capture, (b) such capture is modulated by bottom-up salience, and (c) resistance to capture by irrelevant singletons is mediated by inhibitory processes. These results extend the role of top-down factors in search for a nonsingleton target while arguing against the notion that effects of bottom-up salience and top-down factors on attentional priority are strictly encapsulated within distinct search modes.
Salience-Based Selection: Attentional Capture by Distractors Less Salient Than the Target
PLoS ONE, 2013
Current accounts of attentional capture predict the most salient stimulus to be invariably selected first. However, existing salience and visual search models assume noise in the map computation or selection process. Consequently, they predict the first selection to be stochastically dependent on salience, implying that attention could even be captured first by the second most salient (instead of the most salient) stimulus in the field. Yet, capture by less salient distractors has not been reported and salience-based selection accounts claim that the distractor has to be more salient in order to capture attention. We tested this prediction using an empirical and modeling approach of the visual search distractor paradigm. For the empirical part, we manipulated salience of target and distractor parametrically and measured reaction time interference when a distractor was present compared to absent. Reaction time interference was strongly correlated with distractor salience relative to the target. Moreover, even distractors less salient than the target captured attention, as measured by reaction time interference and oculomotor capture. In the modeling part, we simulated first selection in the distractor paradigm using behavioral measures of salience and considering the time course of selection including noise. We were able to replicate the result pattern we obtained in the empirical part. We conclude that each salience value follows a specific selection time distribution and attentional capture occurs when the selection time distributions of target and distractor overlap. Hence, selection is stochastic in nature and attentional capture occurs with a certain probability depending on relative salience.
Contextual cueing of pop-out visual search: When context guides the deployment of attention
Journal of Vision, 2010
Visual context information can guide attention in demanding (i.e., inefficient) search tasks. When participants are repeatedly presented with identically arranged ('repeated') displays, reaction times are faster relative to newly composed ('non-repeated') displays. The present article examines whether this 'contextual cueing' effect operates also in simple (i.e., efficient) search tasks and if so, whether there it influences target, rather than response, selection. The results were that singleton-feature targets were detected faster when the search items were presented in repeated, rather than non-repeated, arrangements. Importantly, repeated, relative to novel, displays also led to an increase in signal detection accuracy. Thus, contextual cueing can expedite the selection of pop-out targets, most likely by enhancing feature contrast signals at the overall-salience computation stage.
Spatial and temporal dynamics of attentional guidance during inefficient visual search
PloS one, 2008
Spotting a prey or a predator is crucial in the natural environment and relies on the ability to extract quickly pertinent visual information. The experimental counterpart of this behavior is visual search (VS) where subjects have to identify a target amongst several distractors. In difficult VS tasks, it has been found that the reaction time (RT) is influenced by salience factors, such as the target-distractor similarity, and this finding is usually regarded as evidence for a guidance of attention by preattentive mechanisms. However, the use of RT measurements, a parameter which depends on multiple factors, allows only very indirect inferences about the underlying attentional mechanisms. The purpose of the present study was to determine the influence of salience factors on attentional guidance during VS, by measuring directly attentional allocation. We studied attention allocation by using a dual covert VS task in subjects who had 1) to detect a target amongst different items and 2) to report letters briefly flashed inside those items at different delays. As predicted, we showed that parallel processes guide attention towards the most relevant item by virtue of both goal-directed and stimulus-driven factors, and we demonstrated that this attentional selection is a prerequisite for target detection. In addition, we show that when the target is characterized by two features (conjunction VS), the goal-directed effects of both features are initially combined into a unique salience value, but at a later stage, grouping phenomena interact with the salience computation, and lead to the selection of a whole group of items. These results, in line with Guided Search Theory, show that efficient and rapid preattentive processes guide attention towards the most salient item, allowing to reduce the number of attentional shifts needed to find the target.
On the electrophysiological evidence for the capture of visual attention
Journal of Experimental Psychology: Human Perception and Performance, 2013
The presence of a salient distractor interferes with visual search. According to the salience-driven selection hypothesis, this interference is because of an initial deployment of attention to the distractor. Three event-related potential (ERP) findings have been regarded as evidence for this hypothesis: (a) salient distractors were found to elicit an ERP component called N2pc, which reflects attentional selection; (b) with target and distractor on opposite sides, a distractor N2pc was reported to precede the target N2pc (N2pc flip); (c) the distractor N2pc on slow-response trials was reported to occur particularly early, suggesting that the fastest shifts of attention were driven by salience. This evidence is equivocal, however, because the ERPs were noisy (b, c) and were averaged across all trials, thereby making it difficult to know whether attention was deployed directly to the target on some trials (a, b). We reevaluated this evidence using a larger sample size to reduce noise and by analyzing ERPs separately for fast-and slow-response trials. On fast-response trials, the distractor elicited a contralateral positivity (P D )-an index of attentional suppression-instead of an N2pc. There was no N2pc flip or early distractor N2pc. As it stands, then, there is no ERP evidence for the salience-driven selection hypothesis.
Attention, Perception, & Psychophysics
This study used a typical four-item search display to investigate top-down control over attentional capture in an additional singleton paradigm. By manipulating target and distractor color and shape, stimulus saliency relative to the remaining items was systematically varied. One group of participants discriminated the side of a dot within a salient orange target (ST group) presented with green circles (fillers) and a green diamond distractor. A second group discriminated the side of the dot within a green diamond target presented with green circle fillers and a salient orange square distractor (SD group). Results showed faster reaction times and a shorter latency of the N2pc component in the event-related potential (ERP) to the more salient targets in the ST group. Both salient and less salient distractors elicited Pd components of equal amplitude. Behaviorally, no task interference was observed with the less salient distractor, indicating the prevention of attentional capture. How...
Does a salient distractor capture attention early in processing?
Psychonomic Bulletin & Review, 2003
used spatial probes in order to measure the effects of bottom-up and top-down factors on the allocation of spatial attention over time. Subjects searched for a target with a unique shape, with a uniquely colored distractor present on each trial. The singleton distractor captured attention early in processing, whereas attention homed in on the target's location later on. concluded that top-down factors cannot prevent the presence of a salient distractor from delaying target selection. The present study tested the idea that such results were obtained only because subjects adopted the strategy of searching for the most salient item. Kim and Cave's (1999) finding was replicated in Experiment 1. In Experiment 2, instead of a feature search, subjects performed a conjunction search-that is, a task that could not be performed using a salience-based strategy. Probe response times were longest at the salient distractor's location at both the short and the long stimulus onset asynchronies. These results suggest that, early in processing, top-down factors can exert their influence and prevent the capture of attention by a salient distractor.