Nonoxidative pentose phosphate pathways and their direct role in ribose synthesis in tumors: is cancer a disease of cellular glucose metabolism? (original) (raw)

Two high-rate pentose-phosphate pathways in cancer cells

Scientific Reports, 2020

The relevant role of pentose phosphate pathway (PPP) in cancer metabolic reprogramming has been usually outlined by studying glucose-6-phosphate dehydrogenase (G6PD). However, recent evidence suggests an unexpected role for a less characterized PPP, triggered by hexose-6-phosphate dehydrogenase (H6PD) within the endoplasmic reticulum (ER). Studying H6PD biological role in breast and lung cancer, here we show that gene silencing of this reticular enzyme decreases cell content of PPP intermediates and d-ribose, to a similar extent as G6PD silencing. Decrease in overall NADPH content and increase in cell oxidative status are also comparable. Finally, either gene silencing impairs at a similar degree cell proliferating activity. This unexpected response occurs despite the absence of any cross-interference between the expression of both G6PD and H6PD. Thus, overall cancer PPP reflects the contribution of two different pathways located in the cytosol and ER, respectively. Disregarding the...

The Pentose Phosphate Pathway in Cancer: Regulation and Therapeutic Opportunities

Chemotherapy

Background: Tumorigenesis is associated with deregulation of nutritional requirements, intermediary metabolites production, and microenvironment interactions. Unlike their normal cell counterparts, tumor cells rely on aerobic glycolysis, through the Warburg effect. Summary: The pentose phosphate pathway (PPP) is a major glucose metabolic shunt that is upregulated in cancer cells. The PPP comprises an oxidative and a nonoxidative phase and is essential for nucleotide synthesis of rapidly dividing cells. The PPP also generates nicotinamide adenine dinucleotide phosphate, which is required for reductive metabolism and to counteract oxidative stress in tumor cells. This article reviews the regulation of the PPP and discusses inhibitors that target its main pathways. Key Message: Exploiting the metabolic vulnerability of the PPP offers potential novel therapeutic opportunities and improves patients’ response to cancer therapy.

Elevated activity of the oxidative and non-oxidative pentose phosphate pathway in (pre)neoplastic lesions in rat liver

International Journal of Experimental Pathology, 2008

(Pre)neoplastic lesions in livers of rats induced by diethylnitrosamine are characterized by elevated activity of the first irreversible enzyme of the oxidative branch of the pentose phosphate pathway (PPP), glucose-6-phosphate dehydrogenase (G6PD), for production of NADPH. In the present study, the activity of G6PD, and the other NADPH-producing enzymes, phosphogluconate dehydrogenase (PGD), isocitrate dehydrogenase (ICD) and malate dehydrogenase (MD) was investigated in (pre)neoplastic lesions by metabolic mapping. Transketolase (TKT), the reversible rate-limiting enzyme of the non-oxidative branch of the PPP, mainly responsible for ribose production, was studied as well. Activity of G6PD in (pre)neoplastic lesions was highest, whereas activity of PGD and ICD was only 10% and of MD 5% of G6PD activity, respectively. Glucose-6-phosphate dehydrogenase activity in (pre)neoplastic lesions was increased 25 times compared with extralesional parenchyma, which was also the highest activity increase of the four NADPH-producing dehydrogenases. Transketolase activity was 0.1% of G6PD activity in lesions and was increased 2.5fold as compared with normal parenchyma. Transketolase activity was localized by electron microscopy exclusively at membranes of granular endoplasmic reticulum in rat hepatoma cells where G6PD activity is localized as well. It is concluded that NADPH in (pre)neoplastic lesions is mainly produced by G6PD, whereas elevated TKT activity in (pre)neoplastic lesions is responsible for ribose formation with concomitant energy supply by glycolysis. The similar localization of G6PD and TKT activity suggests the channelling of substrates at this site to optimize the efficiency of NADPH and ribose synthesis.

Inhibition of the pentose phosphate pathway by dichloroacetate unravels a missing link between aerobic glycolysis and cancer cell proliferation

Oncotarget, 2015

Glucose fermentation through glycolysis even in the presence of oxygen (Warburg effect) is a common feature of cancer cells increasingly considered as an enticing target in clinical development. This study aimed to analyze the link between metabolism, energy stores and proliferation rates in cancer cells. We found that cell proliferation, evaluated by DNA synthesis quantification, is correlated to glycolytic efficiency in six cancer cell lines as well as in isogenic cancer cell lines. To further investigate the link between glycolysis and proliferation, a pharmacological inhibitior of the pentose phosphate pathway (PPP) was used. We demonstrated that reduction of PPP activity decreases cancer cells proliferation, with a profound effect in Warburg-phenotype cancer cells. The crucial role of the PPP in sustaining cancer cells proliferation was confirmed using siRNAs against glucose-6-phosphate dehydrogenase, the first and rate-limiting enzyme of the PPP. In addition, we found that dic...

The Pentose Phosphate Pathway Dynamics in Cancer and Its Dependency on Intracellular pH

Metabolites

The Pentose Phosphate Pathway (PPP) is one of the key metabolic pathways occurring in living cells to produce energy and maintain cellular homeostasis. Cancer cells have higher cytoplasmic utilization of glucose (glycolysis), even in the presence of oxygen; this is known as the “Warburg Effect”. However, cytoplasmic glucose utilization can also occur in cancer through the PPP. This pathway contributes to cancer cells by operating in many different ways: (i) as a defense mechanism via the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) to prevent apoptosis, (ii) as a provision for the maintenance of energy by intermediate glycolysis, (iii) by increasing genomic material to the cellular pool of nucleic acid bases, (iv) by promoting survival through increasing glycolysis, and so increasing acid production, and (v) by inducing cellular proliferation by the synthesis of nucleic acid, fatty acid, and amino acid. Each step of the PPP can be upregulated in some types of ...

Emerging Role of the Pentose Phosphate Pathway in Hepatocellular Carcinoma

Frontiers in oncology, 2017

In recent years, there has been a revival of interest in metabolic changes of cancer cells as it has been noticed that malignant transformation and metabolic reprogramming are closely intertwined. The pentose phosphate pathway (PPP) is one of the fundamental components of cellular metabolism crucial for cancer cells. This review will discuss recent findings regarding the involvement of PPP enzymes in several types of cancer, with a focus on hepatocellular carcinoma (HCC). We will pay considerable attention to the involvement of glucose-6-phosphate dehydrogenase, the rate-limiting enzyme of the PPP. Subsequently, we discuss the inhibition of the PPP as a potential therapeutic strategy against cancer, in particular, HCC.

Metabolic Control Analysis Aimed at the Ribose Synthesis Pathways of Tumor Cells: A New Strategy for Antitumor Drug Development

2002

Metabolic control analysis predicts that effects on tumor growth are likely to be obtained with lower concentrations of drug, if an enzyme with a high control coefficient on tumor growth is being inhibited. Here we measure glucose-6-phosphate dehydrogenase (G6PDH) control coefficient on in vivo tumor growth using mice bearing Ehrlich ascites tumor cells. We used dehydroepiandrosterone-sulphate (DHEA-S), an uncompetitive inhibitor of this enzyme and the in situ cytochemical method to measure the enzyme activity changes that accompany changes on tumor cell growth. This method ensures that the enzyme activity determined is the one existing in the in situ conditions and enables computing a control coefficient in in situ conditions. From the data obtained on tumor cell number and the in situ enzyme activities in absence and presence of DHEA-S, a control coefficient of 0.41 for G6PDH on tumor cell growth was computed. This value is approximately the half of the transketolase control coefficient value of 0.9 previously reported. Moreover, the use of in situ methods to assess enzyme activities, applied for first time for the calculation of control coefficients in this study, opens new avenues to the use of uncompetitive inhibitors for the measurement of in situ control coefficients.