A flux-free a posteriori error estimator for the incompressible Stokes problem using a mixed FE formulation (original) (raw)
Abstract
In this contribution, we present an a posteriori error estimator for the incompressible Stokes problem valid for a conventional mixed FE formulation. Due to the saddle-point property of the problem, conventional error estimators developed for pure minimization problems cannot be utilized straight-forwardly. The new estimator is built up by two key ingredients. At first, a computed error approximation, exactly fulfilling the continuity equation for the error, is obtained via local Dirichlet problems. Secondly, we adopt the approach of solving local equilibrated flux-free problems in order to bound the remaining, incompressible, error. In this manner, guaranteed upper and lower bounds, of the velocity "energy norm" of the error as well as goaloriented (linear) output functionals, with respect to a reference (overkill) mesh are obtained. In particular, it should be noted that this approach requires no computation of hybrid fluxes. Furthermore, the estimator is applicable to mixed FE formulations using continuous pressure approximations, such as the Mini and Taylor-Hood class of elements. In conclusion, a few simple numerical examples are presented, illustrating the accuracy of the error bounds.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (32)
- I. Babuška, C. Rheinboldt, A-posteriori error estimates for the finite element method, Int. J. Numer. Methods Eng. 12 (1978) 1597-1615.
- M. Ainsworth, J. Oden, A unified approach to a posteriori error estimation using element residual methods, Numer. Math. 65 (1993) 23-50.
- M. Rüter, E. Stein, Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity, Comput. Methods Appl. Mech. Eng. 190 (2000) 519-541.
- K. Eriksson, D. Estep, P. Hansbo, C. Johnson, Introduction to adaptive methods for differential equations, Acta Numer. (1995) 105-158.
- R. Becker, R. Rannacher, A feed-back approach to error control in finite element methods: basic analysis and examples, East-West J. Numer. Math. 4 (1996) 237-264.
- W. Bangerth, R. Rannacher, Adaptive Finite Element Methods for Differential Equations, Birkhäuser Verlag AG, 2003.
- J. Oden, S. Prudhomme, New approaches to error estimation and adaptivity for the stokes and oseen equations, Int. J. Numer. Meth. Fluids 31 (1999) 3-15.
- E. Stein, M. Rüter, S. Ohnimus, Adaptive finite element analysis and modelling of solids and structures. findings, problems and trends, Int. J. Numer. Methods Eng. 60 (2004) 103-138.
- M. Ainsworth, J. Oden, A Posteriori Error Estimation in Finite Element Analysis, John Wiley & Sons, New York, 2000.
- P. Ladevèze, J.P. Pelle, Mastering calculations in linear and nonlinear mechanics, Mechanical Engineering Series, Springer-Verlag, New York, 2005 (translated from the 2001 French original by Theofanis Strouboulis).
- A. Sauer-Budge, J. Bonet, A. Huerta, J. Peraire, Computing bounds for linear functionals of exact weak solutions to Poisson's equation, SIAM J. Numer. Anal. 42 (4) (2004) 1610-1630 (electronic).
- N. Parés, J. Bonet, A. Huerta, J. Peraire, The computation of bounds for linear- functional outputs of weak solutions to the two-dimensional elasticity equations, Comput. Methods Appl. Mech. Eng. 195 (4-6) (2006) 406-429.
- N. Parés, P. Díez, A. Huerta, Bounds of functional outputs for parabolic problems. Part I: exact bounds of the discontinuous galerkin time discretization, Comput. Methods Appl. Mech. Eng. 197 (19-20) (2008) 1641-1660.
- N. Parés, P. Díez, A. Huerta, Bounds of functional outputs for parabolic problems. Part II: bounds of the exact solution, Comput. Methods Appl. Mech. Eng. 197 (19-20) (2008) 1661-1679.
- N. Parés, P. Díez, A. Huerta, Exact bounds for linear outputs of the advection-diffusion- reaction equation using flux-free error estimates, SIAM J. Sci. Comput. 31 (4) (2009) 3064-3089.
- N. Parés, H. Santos, P. Díez, Guaranteed energy error bounds for the Poisson equation using a flux-free approach: solving the local problems in subdomains, Int. J. Numer. Methods Eng. 79 (10) (2009) 1203-1244.
- Z.C. Xuan, N. Parés, J. Peraire, Computing upper and lower bounds for the J-integral in two-dimensional linear elasticity, Comput. Methods Appl. Mech. Eng. 195 (4-6) (2006) 430-443.
- P. Ladevèze, Strict upper error bounds on computed outputs of interest in computational structural mechanics, Comput. Mech. 42 (2) (2008) 271-286.
- A. Sauer-Budge, J. Peraire, Computing bounds for linear functionals of exact weak solutions to the advection-diffusion-reaction equation, SIAM J. Sci. Comput. 26 (2004) 636-652.
- N. Parés, P. Díez, A. Huerta, Subdomain-based flux-free a posteriori error estimators, Comput. Methods Appl. Mech. Eng. 195 (2006) 297-323.
- F. Larsson, P. Hansbo, K. Runesson, Strategies for computing goal-oriented a posteriori error measures in non-linear elasticity, Int. J. Numer. Meth. Eng. 55 (2002) 879-894.
- P. Díez, G. Calderón, Remeshing criteria and proper error representations for goal oriented h-adaptivity, Comput. Methods Appl. Mech. Eng. 196 (2007) 719-733.
- W. Dorfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal. 33 (3) (1996) 1106-1124.
- P. Morin, R. Nochetto, K. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2) (2000) 466-488.
- K. Moon, A. Szepessy, R. Tempone, G. Zouraris, Convergence rates for adaptive approximation of ordinary differential equations, Numer. Math. 96 (1) (2003) 99-129.
- P. Binev, W. Dahmen, R. DeVore, Adaptive finite element methods with convergence rates, Numer. Math. 97 (2) (2004) 219-268.
- J. Donea, A. Huerta, Finite Element Methods for Flow Problems, John Wiley & Sons Ltd., Chichester, 2003.
- H. Melbø, T. Kvamsdal, Goal oriented error estimators for stokes equations based on variationally consistent postprocessing, Comput. Methods Appl. Mech. Eng. 192 (2003) 613-633.
- L. Machiels, J. Peraire, A. Patera, A posteriori finite-element output bounds for the incompressible Navier-Stokes equations: application to a natural convection problem, J. Comput. Phys. 172 (2001) 401-425.
- M. Paraschivoiu, A. Patera, A posteriori bounds for linear functional outputs of Crouzeix-Raviart finite element discretizations of the incompressible stokes problem, Int. J. Numer. Meth. Fluids 32 (2000) 823-849.
- S. Prudhomme, J.T. Oden, On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors, Comput. Methods Appl. Mech. Eng. 176 (1999) 313-331.
- F. Larsson, K. Runesson, Rve computations with error control and adaptivity: the power of duality, Comput. Mech. 39 (2007) 647-661.