Experimental studies on a micromanipulator for micro/nano manipulation (original) (raw)
Related papers
IEEE Transactions on Automation Science and Engineering, 2000
This paper presents a complete design and development procedure of a new XY micromanipulator for two-dimensional (2-D) micromanipulation applications. The manipulator possesses both a nearly decoupled motion and a simple structure, which is featured with parallel-kinematic architecture, flexure hinge-based joints, and piezoelectric actuation. Based on pseudo-rigid-body (PRB) simplification approach, the mathematical models predicting kinematics, statics, and dynamics of the XY stage have been obtained, which are verified by the finite-element analysis (FEA) and then integrated into dimension optimization via the particle swarm optimization (PSO) method. Moreover, a prototype of the micromanipulator is fabricated and calibrated using a microscope vision system, and visual servo control employing a modified PD controller is implemented for the accuracy improvement. The experiments discover that a workspace size of 260 m 260 m with a 2-D positioning accuracy and repeatability around 0.73 and 1.02 m, respectively, can be achieved by the micromanipulator.
Modeling, fabrication, and validation of a high-performance 2DoF piezoactuator for micromanipulation
IEEE-ASME Transactions on Mechatronics, 2005
A high-performance compact micromanipulation system is presented. The system, called the microgripper microrobot on chip (MMOC), was developed at Laboratoire d'Automatique de Besançon (LAB), France. Two main parts in the MMOC design of the MMOC are discussed: 1) the piezoactuator and 2) the end-effectors. The micromanipulator is partially frabricated in a clean room and the piezoactuator system has been machined using the ultrasonic technique. Tests of micromanipulation have been carried out under both standard laboratory conditions as well as inside a scanning electronic microscope (SEM) chamber. Displacements in the plane and out of the plane are 80 and 200 m, respectively, at 100 V and the MMOC seems to be particularly useful for pick-and-place tasks. Modeling has been performed using the Smits' model and the results confirm the validity of the model for static boundary conditions. The authors have also developed a combined charge and voltage control called , which results in an order of magnitude reduction in the hysteresis of the piezoactuator. Future work will include integrating force sensors in the micromanipulator in order to measure the manipulation force. This will allow the implementation of the feedback control in the MMOC.
Robust Control Framework for Piezoelectric Actuation Systems in Micro/Nano Manipulation
TENCON 2005 - 2005 IEEE Region 10 Conference, 2005
Micro/nano manipulation has been identified as one of the key enabling technologies for many emerging challenges. Within this scope, piezoelectric actuators have played major roles in achieving the required nano-resolution motion. This paper proposes a robust control framework for piezoelectric actuation systems to follow specified motion trajectories. The basic concept associated with this methodology lies in the specification of a target performance and the robust control scheme formulation for piezoelectric actuation systems to ensure the convergence of the position tracking error to zero. This control methodology is attractive as its implementation requires only the knowledge of the estimated system parameters and their corresponding bounds, including bound of hysteresis and external disturbances. Feasibility study of the framework for piezoelectric actuation systems in micro/nano manipulation is described. Simulation results validated the suitability of the proposed control approach.
Precision control of a piezo-actuated micro telemanipulation system
International Journal of Precision Engineering and Manufacturing, 2010
Piezoelectric actuators are widely used in micro manipulation applications. However hysteresis nonlinearity limits accuracy of these actuators. This paper presents a novel approach for utilizing a piezoelectric nano-stage as slave manipulator of a teleoperation system. The Prandtl-Ishlinskii (PI) model is used to model actuator hysteresis in feedforward scheme to cancel out this nonlinearity. To deal with the influence of parametric uncertainties, unmodeled dynamics, and PI identification error a perturbation term is added to the slave model and apply a sliding mode based impedance control with perturbation estimation. The stability of the entire system is guaranteed by Llewellyn’s absolute stability criterion. Performance of the proposed controllers is verified through experiments.
Dither based precise position control of piezo actuated micro-nano manipulator
This paper addresses the problem of hysteresis and presents a new control scheme for hysteresis compensation of piezo-electrically actuated micro-nano manipulators. The technology employs an Inverse Dahl model based feed-forward mechanism in combination with a feedback control algorithm along with simultaneous voltage and displacement dither strategy. The actuator performance is seen to improve as a function of injected noise level into the plant – a phenomenon known as dithering. The notion of stochastic resonance for nano positioning is studied to determine the optimal dither level for efficient plant performance. The efficacy of the proposed control scheme has been confirmed through rigorous simulations in terms of two specific tests – a) tracking error test and b) hysteresis curve area test. Results show an enhanced positioning precision of the manipulator with the proposed dither control than without it. Owing to its algorithmic simplicity, the proposed control genre can be extended to the parlance of other nano-scale applications.
Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007
This paper presents a robust adaptive control methodology for piezoelectric actuation systems to track specified motion trajectories. This methodology is proposed to deal with the control problems of unknown or uncertain system parameters, non-linearities including the hysteresis effect, and external disturbances in the piezoelectric actuation systems, without any form of feed-forward compensation. In this paper, a special class of positive definite functions is employed to formulate the control methodology such that the closed-loop system stability can be guaranteed. The control formulation as well as the stability analysis is detailed. Furthermore, an experimental investigation is also conducted. Implementation of the control methodology is practical as only a knowledge of the estimated system parameters is required. In the experimental study, a promising tracking ability in following a specified motion trajectory is demonstrated. With the capability of motion tracking under the aforementioned conditions, the robust adaptive control methodology is very attractive in realising high performance control applications in the field of micro/nano manipulation.
Modelling, fabrication and validation of a high performance 2 DOF piezoactuator for manipulation
A high-performance compact micromanipulation system is presented. The system, called the microgripper microrobot on chip (MMOC), was developed at Laboratoire d'Automatique de Besançon (LAB), France. Two main parts in the MMOC design of the MMOC are discussed: 1) the piezoactuator and 2) the end-effectors. The micromanipulator is partially frabricated in a clean room and the piezoactuator system has been machined using the ultrasonic technique. Tests of micromanipulation have been carried out under both standard laboratory conditions as well as inside a scanning electronic microscope (SEM) chamber. Displacements in the plane and out of the plane are 80 and 200 m, respectively, at 100 V and the MMOC seems to be particularly useful for pick-and-place tasks. Modeling has been performed using the Smits' model and the results confirm the validity of the model for static boundary conditions. The authors have also developed a combined charge and voltage control called , which results in an order of magnitude reduction in the hysteresis of the piezoactuator. Future work will include integrating force sensors in the micromanipulator in order to measure the manipulation force. This will allow the implementation of the feedback control in the MMOC.
Development of a Micromanipulation System with Force Sensing
2007
This article provides in-depth knowledge about our undergoing effort to develop an open architecture micromanipulation system with force sensing capabilities. The major requirement to perform any micromanipulation task effectively is to ensure the controlled motion of actuators within nanometer accuracy with low overshoot even under the influence of disturbances. Moreover, to achieve high dexterity in manipulation, control of the interaction forces is required. In micromanipulation, control of interaction forces necessitates force sensing in milli-Newton range with nano-Newton resolution . In this paper, we present a position controller based on a discrete time sliding mode control architecture along with a disturbance observer. Experimental verifications for this controller are demonstrated for 100, 50 and 10 nanometer step inputs applied to PZT stages. Our results indicate that position tracking accuracies up to 10 nanometers, without any overshoot and low steady state error are achievable. Furthermore, the paper includes experimental verification of force sensing within nano-Newton resolution using a piezoresistive cantilever endeffector. Experimental results are compared to the theoretical estimates of the change in attractive forces as a function of decreasing distance and of the pull off force between a silicon tip and a glass surface, respectively. Good agreement among the experimental data and the theoretical estimates has been demonstrated.
Hysteresis compensation of a piezoactuated XY micropositioning system based on disturbance observer
2010 8th World Congress on Intelligent Control and Automation, 2010
In this paper, a two-loop controller is proposed to suppress the hysteresis and to achieve a precise motion tracking control for a piezo-driven XY parallel micropositioning system. Specifically, an inner-loop disturbance observer (DOB) is employed to tolerate the unmodeled hysteresis which is treated as a disturbance to the nominal plant model of the system, and an outer-loop feedback controller is used to compensate for the remaining nonlinearities and uncertainties. The effectiveness of the proposed controller over the sole PID controller is demonstrated through experimental studies. Results show that the DOB-based two-loop control can reduce the hysteresis to a negligible level and lead to a motion tracking with submicron accuracy, which provides a sound base of practical control of the micropositioning system for micro/nano scale manipulation.