Altered Resting State Brain Dynamics in Temporal Lobe Epilepsy Can Be Observed in Spectral Power, Functional Connectivity and Graph Theory Metrics (original) (raw)
Related papers
Source-level EEG and graph theory reveal widespread functional network alterations in focal epilepsy
ObjectiveThe hypersynchronous neuronal activity associated with epilepsy causes widespread functional network disruptions extending beyond the epileptogenic zone. This altered functional network topology is considered a mediator from which non-seizure symptoms arise, such as cognitive impairment. The aim of the present study was to demonstrate the presence of functional network alterations in focal epilepsy patients with good seizure control and high quality of life.MethodsWe compared twenty-two focal epilepsy patients and sixteen healthy controls on graph metrics derived from functional connectivity (phase-locking value) of source reconstructed resting-state EEG. Graph metrics were calculated over a predefined range of network densities in five frequency bands.ResultsIn terms of global network topology alterations, we observed a significantly increased small world index in epilepsy patients relative to the healthy controls. On the local level, two left-hemisphere regions displayed ...
What graph theory actually tells us about resting state interictal MEG epileptic activity
Neuroimage Clinical, 2015
Graph theory provides a useful framework to study functional brain networks from neuroimaging data. In epilepsy research, recent findings suggest that it offers unique insight into the fingerprints of this pathology on brain dynamics. Most studies hitherto have focused on seizure activity during frontal focal epilepsy, but less is known about functional epileptic brain networks during interictal activity in frontal focal and generalized epilepsy. Besides, it is not clear yet which measures are most suitable to characterize these networks. To address these issues, we recorded magnetoencephalographic (MEG) data from two orthogonal planar gradiometers from 45 subjects from three groups (15 healthy controls (7 males, 24 ± 6 years), 15 frontal focal (8 male, 32 ± 16 years) and 15 generalized epileptic (6 male, 27 ± 7 years) patients) during interictal resting state with closed eyes. Then, we estimated the total and relative spectral power of the largest principal component of the gradiometers, and the degree of phase synchronization between each sensor site in the frequency range [0.5-40 Hz]. We further calculated a comprehensive battery of 15 graph-theoretic measures and used the affinity propagation clustering algorithm to elucidate the minimum set of them that fully describe these functional brain networks. The results show that differences in spectral power between the control and the other two groups have a distinctive pattern: generalized epilepsy presents higher total power for all frequencies except the alpha band over a widespread set of sensors; frontal focal epilepsy shows higher relative power in the beta band bilaterally in the fronto-central sensors. Moreover, all network indices can be clustered in three groups, whose exemplars are the global network efficiency, the eccentricity and the synchronizability. Again, the patterns of differences were clear: the brain network of the generalized epilepsy patients presented greater efficiency and lower eccentricity than the control subjects for the high frequency bands, without a clear topography. Besides, the frontal focal epileptic patients showed only reduced eccentricity for the theta band over fronto-temporal and central sensors. These outcomes indicate that functional epileptic brain networks are different to those of healthy subjects during interictal stage at rest, with a unique pattern of dissimilarities for each type of epilepsy. Further, when properly selected, three network indices suffice to provide a comprehensive description of these differences. Yet, since such uniqueness in the pattern of differences is also evident in the power spectrum, we conclude that the added value of the graph theory approach in this context should not be overestimated. 45
Network dynamics of the epileptic brain at rest
Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2010
Baseline neurodynamics are believed to play an important role in normal brain function. A potentially intrinsic property of the brain is the weak coupling between networks at rest, which enables it to be flexible, adapt, process novel stimuli, and learn. Brain regions become differentially coordinated in response to cognitive task and behavior demands and external stimuli. However, abnormally synchronized resting brain networks may also be associated with different pathologies. We investigated baseline network dynamics in the epileptic brain using information theoretic parameters to quantify coupling and directionality of information flow between different cortical regions. We estimated relative entropy, conditional mutual information and a related measure of directional coupling, from EEGs of patients with epilepsy and healthy subjects. At rest, the healthy brain appears to be characterized by low and non-directional network coupling, whereas the epileptic brain appears to be trans...
Disrupted Brain Functional Organization in Epilepsy Revealed by Graph Theory Analysis
Brain Connectivity, 2015
The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age-and gender-matched healthy controls. A brain functional network model was constructed based on resting-state functional connectivity. A minimum spanning tree combined with proportional thresholding approach was used to obtain sparse connectivity matrices for each subject, which formed the basis of brain networks. We examined the brain reorganizational changes in epilepsy thoroughly at the level of the whole brain, the functional network, and individual brain regions. At the whole-brain level, local efficiency was significantly decreased in epilepsy patients compared with the healthy controls. However, global efficiency was significantly increased in epilepsy due to increased number of functional connections between networks (although weakly connected). At the functional network level, there were significant proportions of newly formed connections between the default mode network and other networks and between the subcortical network and other networks. There was a significant proportion of decreasing connections between the cingulo-opercular task control network and other networks. Individual brain regions from different functional networks, however, showed a distinct pattern of reorganizational changes in epilepsy. These findings suggest that epilepsy alters brain efficiency in a consistent pattern at the whole-brain level, yet alters brain functional networks and individual brain regions differently.
2021
The main challenge in the clinical assessment of Psychogenic Non-Epileptic Seizures (PNES) is the lack of an electroencephalographic marker in the electroencephalography (EEG) readout. Although decades of EEG studies have focused on detecting cortical brain function underlying PNES, the principle of PNES remains poorly understood. To address this problem, electric potentials generated by large populations of neurons were collected during the resting state to be processed after that by Power Spectrum Density (PSD) for possible analysis of PNES signatures. Additionally, the integration of distributed information of regular and synchronized multi-scale communication within and across inter-regional brain areas has been observed using functional connectivity tools like Phase Lag Index (PLI) and graph-derived metrics. A cohort study of 20 PNES and 19 Healthy Control subjects (HC) were enrolled. The major finding is that PNES patients exhibited significant differences in alpha-power spect...
Objective: Temporal lobe epilepsy (TLE) is one of the most common forms of drug-resistant epilepsy. Previous studies have indicated that the TLE-related impairments existed in extensive local functional networks. However, little is known about the alterations in the topological properties of whole brain functional networks. Method: In this study, we acquired resting-state BOLD-fMRI (rsfMRI) data from 26 TLE patients and 25 healthy controls, constructed their whole brain functional networks, compared the differences in topological parameters between the TLE patients and the controls, and analyzed the correlation between the altered topological properties and the epilepsy duration. Results: The TLE patients showed significant increases in clustering coefficient and characteristic path length, but significant decrease in global efficiency compared to the controls. We also found altered nodal parameters in several regions in the TLE patients, such as the bilateral angular gyri, left middle temporal gyrus, right hippocampus, triangular part of left inferior frontal gyrus, left inferior parietal but supramarginal and angular gyri, and left parahippocampus gyrus. Further correlation analysis showed that the local efficiency of the TLE patients correlated positively with the epilepsy duration. Conclusion: Our results indicated the disrupted topological properties of whole brain functional networks in TLE patients. Significance: Our findings indicated the TLE-related impairments in the whole brain functional networks, which may help us to understand the clinical symptoms of TLE patients and offer a clue for the diagnosis and treatment of the TLE patients.
Epilepsy & Behavior, 2014
Functional magnetic resonance imaging (fMRI) has just completed 20 years of existence. It currently serves as a research tool in a broad range of human brain studies in normal and pathological conditions, as is the case of epilepsy. To date, most fMRI studies aimed at characterizing brain activity in response to various active paradigms. More recently, a number of strategies have been used to characterize the low-frequency oscillations of the ongoing fMRI signals when individuals are at rest. These datasets have been largely analyzed in the context of functional connectivity, which inspects the covariance of fMRI signals from different areas of the brain. In addition, resting state fMRI is progressively being used to evaluate complex network features of the brain. These strategies have been applied to a number of different problems in neuroscience, which include diseases such as Alzheimer's, schizophrenia, and epilepsy. Hence, we herein aimed at introducing the subject of complex network and how to use it for the analysis of fMRI data. This appears to be a promising strategy to be used in clinical epilepsy. Therefore, we also review the recent literature that has applied these ideas to the analysis of fMRI data in patients with epilepsy.
Evolving functional network properties and synchronizability during human epileptic seizures
… Journal of Nonlinear …, 2008
We assess electrical brain dynamics before, during, and after 100 human epileptic seizures with different anatomical onset locations by statistical and spectral properties of functionally defined networks. We observe a concave-like temporal evolution of characteristic path length and cluster coefficient indicative of a movement from a more random toward a more regular and then back toward a more random functional topology. Surprisingly, synchronizability was significantly decreased during the seizure state but increased already prior to seizure end. Our findings underline the high relevance of studying complex systems from the viewpoint of complex networks, which may help to gain deeper insights into the complicated dynamics underlying epileptic seizures.
Functional Modularity of Background Activities in Normal and Epileptic Brain Networks
Physical Review Letters, 2010
We analyze the connectivity structure of weighted brain networks extracted from spontaneous magnetoencephalographic (MEG) signals of healthy subjects and epileptic patients (suffering from absence seizures) recorded at rest. We find that, for the activities in the 5-14 Hz range, healthy brains exhibit a sparse connectivity, whereas the brain networks of patients display a rich connectivity with clear modular structure. Our results suggest that modularity plays a key role in the functional organization of brain areas during normal and pathological neural activities at rest. 87.19.le, 87.19.lj From the brain to the Internet and to social groups, the characterization of the connectivity patterns of complex systems has revealed a wiring organization that can be captured neither by regular lattices, nor by random graphs . In neurosciences, it is widely acknowledged that the emergence of several pathological states is accompanied by changes in brain connectivity patterns . Recently, it has been found that functional connectivity patterns obtained from magnetoencephalography (MEG) and electroencephalography (EEG) signals during different pathological and cognitive brain states (including epilepsy) display small-world (SW) properties . Empirical studies have also lead to the hypothesis that brain functions rely on the coordination of a scattered mosaic of functionally specialized brain regions (modules), forming a web-like structure of neural assemblies . Modularity is a key concept in complex networks from RNA structures to social networks . A module is usually defined as a subset of units within a network, such that connections between them are denser than connections with the rest of the network. In biological systems, it is generally acknowledged that modularity results from evolutionary constraints and plays a key role in robustness, flexibility and stability .