Molecular structure, pKa, lipophilicity, solubility, absorption, polar surface area, and blood brain barrier penetration of some antiangiogenic agents (original) (raw)
2011, Structural Chemistry
The methods of theoretical chemistry have been used to elucidate molecular properties of selected and novel antiangiogenic agents (semaxanib, sunitinib, N-methylsunitinib, sorafenib, motesanib, ABT-869, vatalanib, vandetanib, AEE 788, CP-547632, A-1, A-2, A-3, and A-4). The geometries and energies of these drugs have been computed using HF/6-31G(d), Becke3LYP/6-31G(d) and Becke3LYP/ 6-31??G(d,p) model chemistries. Wherever possible the most stable conformations of inhibitors studied are stabilized by means of intramolecular hydrogen bonds. Water has a remarkable effect on the geometry of the antiangiogenic agents studied. Computed partition coefficients (ALOGPS method) varied between 2.3 and 5. Compounds studied are described as lipophilic inhibitors. Semaxanib is inhibitor with lowest lipophilicity. The antiangiogenic agents studied are only slightly soluble in water; their computed solubility (log S) from interval between -3.4 and -5.4 is sufficient for fast absorption. Selection criteria for drug-like properties of VEGFR2 inhibitors investigated were designed. Based on these criteria, three compounds (A-2, A-3, and A-4) were selected for synthesis and biological testing for antianiogenic activity on VEGFR2 receptor.