Relative Entropy of Entanglement and Restricted Measurements (original) (raw)
Related papers
Remarks on entanglement measures and non-local state distinguishability
2002
We investigate the properties of three entanglement measures that quantify the statistical distinguishability of a given state with the closest disentangled state that has the same reductions as the primary state. In particular, we concentrate on the relative entropy of entanglement with reversed entries. We show that this quantity is an entanglement monotone which is strongly additive, thereby demonstrating that monotonicity under local quantum operations and strong additivity are compatible in principle. In accordance with the presented statistical interpretation which is provided, this entanglement monotone, however, has the property that it diverges on pure states, with the consequence that it cannot distinguish the degree of entanglement of different pure states. We also prove that the relative entropy of entanglement with respect to the set of disentangled states that have identical reductions to the primary state is an entanglement monotone. We finally investigate the trace-norm measure and demonstrate that it is also a proper entanglement monotone.
Characterizing entanglement with global and marginal entropic measures
Physical Review A, 2003
We qualify the entanglement of arbitrary mixed states of bipartite quantum systems by comparing global and marginal mixednesses quantified by different entropic measures. For systems of two qubits we discriminate the class of maximally entangled states with fixed marginal mixednesses, and determine an analytical upper bound relating the entanglement of formation to the marginal linear entropies. This result partially generalizes to mixed states the quantification of entaglement with marginal mixednesses holding for pure states. We identify a class of entangled states that, for fixed marginals, are globally more mixed than product states when measured by the linear entropy. Such states cannot be discriminated by the majorization criterion.
Measures of entanglement in multipartite bound entangled states
Physical Review A, 2004
Bound entangled states are states that are entangled but from which no entanglement can be distilled if all parties are allowed only local operations and classical communication. However, in creating these states one needs nonzero entanglement resources to start with. Here, the entanglement of two distinct multipartite bound entangled states is determined analytically in terms of a geometric measure of entanglement and a related quantity. The results are compared with those for the negativity and the relative entropy of entanglement.
Quantum entanglement and entropy
Physical Review A, 2001
Entanglement is the fundamental quantum property behind the now popular field of quantum transport of information. This quantum property is incompatible with the separation of a single system into two uncorrelated subsystems. Consequently, it does not require the use of an additive form of entropy. We discuss the problem of the choice of the most convenient entropy indicator, focusing our attention on a system of 2 qubits, and on a special set, denoted by ℑ. This set contains both the maximally and the partially entangled states that are described by density matrices diagonal in the Bell basis set. We select this set for the main purpose of making more straightforward our work of analysis. As a matter of fact, we find that in general the conventional von Neumann entropy is not a monotonic function of the entanglement strength. This means that the von Neumann entropy is not a reliable indicator of the departure from the condition of maximum entanglement. We study the behavior of a form of non-additive entropy, made popular by the 1988 work by Tsallis. We show that in the set ℑ, implying the key condition of non-vanishing entanglement, this non-additive entropy indicator turns out
Tripartite entanglement and quantum relative entropy
Journal of Physics A: Mathematical and General, 2000
We establish relations between tripartite pure state entanglement and additivity properties of the bipartite relative entropy of entanglement. Our results pertain to the asymptotic limit of local manipulations on a large number of copies of the state. We show that additivity of the relative entropy would imply that there are at least two inequivalent types of asymptotic tripartite entanglement. The methods used include the application of some useful lemmas that enable us to analytically calculate the relative entropy for some classes of bipartite states.
Physical Review Letters, 2006
We show that entanglement guarantees difficulty in the discrimination of orthogonal multipartite states locally. The number of pure states that can be discriminated by local operations and classical communication is bounded by the total dimension over the average entanglement. A similar, general condition is also shown for pure and mixed states. These results offer a rare operational interpretation for three abstractly defined distance like measures of multipartite entanglement.
Resource Theory of Entanglement with a Unique Multipartite Maximally Entangled State
Physical Review Letters, 2019
Entanglement theory is formulated as a quantum resource theory in which the free operations are local operations and classical communication (LOCC). This defines a partial order among bipartite pure states that makes it possible to identify a maximally entangled state, which turns out to be the most relevant state in applications. However, the situation changes drastically in the multipartite regime. Not only do there exist inequivalent forms of entanglement forbidding the existence of a unique maximally entangled state, but recent results have shown that LOCC induces a trivial ordering: almost all pure entangled multipartite states are incomparable (i.e. LOCC transformations among them are almost never possible). In order to cope with this problem we consider alternative resource theories in which we relax the class of LOCC to operations that do not create entanglement. We consider two possible theories depending on whether resources correspond to multipartite entangled or genuinely multipartite entangled (GME) states and we show that they are both non-trivial: no inequivalent forms of entanglement exist in them and they induce a meaningful partial order (i.e. every pure state is transformable to more weakly entangled pure states). Moreover, we prove that the resource theory of GME that we formulate here has a unique maximally entangled state, the generalized GHZ state, which can be transformed to any other state by the allowed free operations.
Physical Review A, 2003
We investigate the asymptotic rates of entanglement transformations for bipartite mixed states by local operations and classical communication (LOCC). We analyse the relations between the rates for different transitions and obtain simple lower and upper bound for these transitions. In a transition from one mixed state to another and back, the amount of irreversibility can be different for different target states. Thus in a natural way, we get the concept of "amount" of irreversibility in asymptotic manipulations of entanglement. We investigate the behaviour of these transformation rates for different target states. We show that with respect to asymptotic transition rates under LOCC, the maximally entangled states do not have a special status. In the process, we obtain that the entanglement of formation is additive for all maximally correlated states. This allows us to show irreversibility in asymptotic entanglement manipulations for maximally correlated states in 2 ⊗ 2. We show that the possible nonequality of distillable entanglement under LOCC and that under operations preserving the positivity of partial transposition, is related to the behaviour of the transitions (under LOCC) to separable target states.
Physical Review A, 2008
We prove conjectures on the relative entropy of entanglement (REE) for two families of multipartite qubit states. Thus, analytic expressions of REE for these families of states can be given. The first family of states are composed of mixture of some permutation-invariant multi-qubit states. The results generalized to multi-qudit states are also shown to hold. The second family of states contain Dür's bound entangled states. Along the way, we have discussed the relation of REE to two other measures: robustness of entanglement and geometric measure of entanglement, slightly extending previous results.
Comparison of the relative entropy of entanglement and negativity
Physical Review A, 2008
It is well known that for two qubits the upper bounds of the relative entropy of entanglement (REE) for a given concurrence as well as the negativity for a given concurrence are reached by pure states. We show that, by contrast, there are two-qubit mixed states for which the REE for some range of a fixed negativity is higher than that for pure states. Moreover, we demonstrate that a mixture of a pure entangled state and pure separable state orthogonal to it is likely to give the maximal REE. By noting that the negativity is a measure of entanglement cost under operations preserving positivity of partial transpose, our results provide an explicit example of operations such that, even though the entanglement cost for an exact preparation is the same, the entanglement of distillation of a mixed state can exceed that of pure states. This means that the entanglement manipulation via a pure state can result in a larger entanglement loss than that via a mixed state.