Producing nanograined microstructure in Mg–Al–Zn alloy by two-step friction stir processing (original) (raw)

Abstract

Nanograined structures with an average grain size of 85nmhavebeenachievedinsolutionhardenedAZ31magnesiumalloybytwo−passfrictionstirprocessingunderrapidheatsinkinwhichthesecondpasshasalowerheatinput.Themeanhardnessofthenanograinedregionreaches85 nm have been achieved in solution hardened AZ31 magnesium alloy by two-pass friction stir processing under rapid heat sink in which the second pass has a lower heat input. The mean hardness of the nanograined region reaches 85nmhavebeenachievedinsolutionhardenedAZ31magnesiumalloybytwopassfrictionstirprocessingunderrapidheatsinkinwhichthesecondpasshasalowerheatinput.Themeanhardnessofthenanograinedregionreaches1.5 GPa (or 150 H v), about three times that of the matrix. The evolution of the nanograined structure is also investigated.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (31)

  1. C.C. Koch, D.G. Morris, K. Lu, A. Inoue, Mater. Res. Soc. Bull. 24 (1999) 54.
  2. S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev, A.K. Mukherjee, Nature 398 (1999) 684.
  3. T.C. Lowe, R.Z. Valiev (Eds.), Investigations and Appli- cations of Severe Plastic Deformation, Kluwer, Dordr- echt, 2000.
  4. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45 (2000) 103.
  5. M. Mabuchi, K. Ameyama, H. Iwasaki, K. Higashi, Acta Mater. 47 (1999) 2047.
  6. M.T. Perez-Prado, J.A. del Valle, O.A. Ruano, Scripta Mater. 51 (2004) 1093.
  7. M.M. Myshlyaev, H.J. McQueen, A. Mwembela, E. Konopleva, Mater. Sci. Eng. A 337 (2002) 121.
  8. H.Q. Sun, Y.N. Shi, M.X. Zhang, K. Lu, Acta Mater. 55 (2007) 975.
  9. Q. Yang, A.K. Ghosh, Acta Mater. 54 (2006) 5147.
  10. Z. Horita, K. Matsubara, K. Makii, T.G. Langdon, Scripta Mater. 47 (2002) 255.
  11. K. Matsubara, Y. Miyahara, Z. Horita, T.G. Langdon, Acta Mater. 51 (2003) 3073.
  12. H.K. Lin, J.C. Huang, T.G. Langdon, Mater. Sci. Eng. A 402 (2005) 250.
  13. Y.J. Kwon, I. Shigematsu, N. Saito, Scripta Mater. 49 (2003) 785.
  14. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee, Scripta Mater. 42 (2000) 163.
  15. C.I. Chang, C.J. Lee, J.C. Huang, Scripta Mater. 51 (2004) 509.
  16. Y.S. Sato, Y. Kurihara, S.H.C. Park, H. Kokawa, N. Tsuji, Scripta Mater. 50 (2004) 57.
  17. J.Q. Su, T.W. Nelson, C.J. Sterling, Scripta Mater. 52 (2005) 135.
  18. Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Scripta Mater. 55 (2006) 1067.
  19. C.J. Lee, J.C. Huang, P.J. Hsieh, Scripta Mater. 54 (2006) 1415.
  20. C.J. Lee, J.C. Huang, Mater. Trans. 47 (2006) 2773.
  21. C.I. Chang, Y.N. Wang, H.R. Pei, C.J. Lee, J.C. Huang, Mater. Trans. 47 (2006) 2942.
  22. C.I. Chang, X.H. Du, J.C. Huang, Scripta Mater. 57 (2007) 209.
  23. A.J. Ardell, Metall. Trans. 16A (1985) 2131.
  24. H.J. Forst, M.F. Ashby, Deformation-Mechanism Maps, Pergamon Press, Oxford, 1982, pp. 21 and 44.
  25. A. Takara, Y. Nishikawa, H. Watanabe, H. Somekawa, T. Mukai, K. Higashi, Mater. Trans. 45 (2004) 2377.
  26. K. Higashi, J. Wolfenstine, Mater. Lett. 10 (1991) 329.
  27. T. Mohri, M. Mabuchi, M. Nakamura, T. Asahina, H. Iwasaki, T. Aizawa, K. Higashi, Mater. Sci. Eng. A 290 (2000) 139.
  28. H.-P. Pu, F.C. Liu, J.C. Huang, Metall. Mater. Trans. A 26 (1995) 1153.
  29. J.C. Huang, I.C. Hsiao, T.D. Wang, B.Y. Lou, Scripta Mater. 43 (2000) 213.
  30. I.C. Hsiao, J.C. Huang, Metall. Mater. Trans. A 33 (2002) 1373.
  31. K. Wang, N.R. Tao, G. Liu, J. Lu, K. Lu, Acta Mater. 54 (2006) 5281.