Altered bile acid metabolism in primary biliary cirrhosis (original) (raw)

1981, Digestive Diseases and Sciences

Selected aspects of bile acid metabolism were assessed in six women with primary biliary cirrhosis and varying degrees of cholestasis. Urinary bile acid excretion was markedly increased and correlated highly with serum levels. In three patients in whom urinary bile acids were separated by chromatography, the majority of urinary bile acids were monosulfated (34%, 42%, 32%) or polysulfated and~or glucuronidated (30%, 20%, 38%). The monosulfates of chenodeoxycholic acid were conjugated at either the 3 position (67%, 68%, 73%) or the 7 position (33%, 32%, 27%); similarly, the monosulfates of cholic cicid were conjugated at the 3 position (65%, 58%, 68%) or the 7position (35%, 42%, 32%). The position of sulfation was not markedly influenced by the mode of amidation with glycine or taurine. Chenodeoxycholic exchangeable pool size, turnover rate, and synthesis were measured by isotope dilution and found to be well within normal limits, despite the cholestasis. The fraction of chenodeoxycholic acid synthesis excreted in urine ranged from 9 to 48%; 4-38% of chenodeoxycholic acid synthesis was sulfated. These data indicate that the major abnormalities in bile acid metabolism in patients with cholestasis secondary to primary biliary cirrhosis are formdtion of sulfated bile acids in greatly increased amounts, elevation of blood levels of primary bile acids, and a shift to renal excretion aS a major mechanism for bile acid elimination. Chenodeoxycholic acid Synthesis continues at its usual rate despite cholestasis. Whether these changes, including the formation of 7-monosulfated bile acids, occur in other forms of cholestasis and whether either" the persistance of unchanged chenodeoxycholic acid synthesis or the formation of such novel conjugates has any pathophysiological significance remain to be investigated.