Controlling Molecular Organization for the Realization of Sub-Wavelength Light Sources (original) (raw)

From molecules in solution to molecules on surfaces -using supramolecular dyads to form functional self-assembled networks on graphene

Journal of Materials Chemistry C, 2022

Using supramolecular chemistry to functionalise graphene for photonic applications is a challenging issue due to graphene's capacity to quench any emission from molecules adsorbed on its surface. To overcome this problem, we propose the use of molecular dyads to form ordered self-assemblies on graphene-like substrates. These dyads are designed to reduce surface quenching by positioning the emissive component out-of-the plane of the substrate. We use a zinc porphyrin and a phthalocyanine as molecular pedestals to immobilise the dyads onto the graphene thanks to a nanoporous network; and a perylenetetracarboxylic diimide, as the emissive component. This approach has been recently reported, however; we have found that the formation of these dyads is an intricate process, that requires an in-depth study of the solution phase before its study on a graphene surface. We demonstrate that two types of dyads can be formed in solution, depending on the supramolecular interactions that dominate the equilibrium, and the type of molecular pedesal used. A metal-ligand association was observed between the perylene and the porphyrin pedestal, whilst the phthalocyanine leads to a dyad formed via p-p interactions. We also conclude that scanning tunneling microscopy is not a reliable technique to characterise the on-surface assemblies, due to a strong probe-molecule interaction. Other spectroscopic techniques; such as epifluorescence micro-spectroscopy coupled with atomic force-microscopy, were investigated, however we found it is ambitious to rely solely on these techniques, to correlate observations from the nano to the micrometric scale.

Guided Molecular Assembly on a Locally Reactive 2D Material

Advanced materials (Deerfield Beach, Fla.), 2017

Atomically precise engineering of the position of molecular adsorbates on surfaces of 2D materials is key to their development in applications ranging from catalysis to single-molecule spintronics. Here, stable room-temperature templating of individual molecules with localized electronic states on the surface of a locally reactive 2D material, silicene grown on ZrB2 , is demonstrated. Using a combination of scanning tunneling microscopy and density functional theory, it is shown that the binding of iron phthalocyanine (FePc) molecules is mediated via the strong chemisorption of the central Fe atom to the sp(3) -like dangling bond of Si atoms in the linear silicene domain boundaries. Since the planar Pc ligand couples to the Fe atom mostly through the in-plane d orbitals, localized electronic states resembling those of the free molecule can be resolved. Furthermore, rotation of the molecule is restrained because of charge rearrangement induced by the bonding. These results highlight ...

Electric-field-controlled phase transition in a 2D molecular layer

Scientific reports, 2017

Self-assembly of organic molecules is a mechanism crucial for design of molecular nanodevices. We demonstrate unprecedented control over the self-assembly, which could allow switching and patterning at scales accessible by lithography techniques. We use the scanning tunneling microscope (STM) to induce a reversible 2D-gas-solid phase transition of copper phthalocyanine molecules on technologically important silicon surface functionalized by a metal monolayer. By means of ab-initio calculations we show that the charge transfer in the system results in a dipole moment carried by the molecules. The dipole moment interacts with a non-uniform electric field of the STM tip and the interaction changes the local density of molecules. To model the transition, we perform kinetic Monte Carlo simulations which reveal that the ordered molecular structures can form even without any attractive intermolecular interaction.