The impact of urbanization on the monthly averaged diurnal cycle in October 2004 in the Pearl River Delta region (original) (raw)

Urbanization Enhanced Summertime Extreme Hourly Precipitation over the Yangtze River Delta

Journal of Climate

An extensive urban agglomeration has occurred over the Yangtze River Delta (YRD) region of East China as a result of rapid urbanization since the middle 1990s. In this study, a 44-yr (i.e., 1975-2018) climatology of the summertime extreme hourly precipitation (EXHP; greater than the 90th percentile) over the YRD is analyzed, using historical land-use data, surface temperature and hourly rain gauge observations, and then the relationship between rapid urbanization and EXHP changes is examined. Results show significant EXHP contrasts in diurnal variation and storm type roughly before and after middle July. That is, tropical cyclones (TCs) account for 16.4% of the total EXHP hours, 80.5% of which occur during the late summer, whereas the non-TC EXHP accounts for 94.7% and 66.2% during the early and late summer, respectively. Increasing trends in occurrence frequency and amount of the non-TC and TC-induced EXHP are detected over the urban agglomeration. Statistically significant, larger...

Diurnal variations of summer precipitation in the Beijing area and the possible effect of topography and urbanization

2011

The present study examined the diurnal variations of summer precipitation in the Beijing area by using subdaily precipitation and wind observations. A combined effect of topography and urbanization on the characteristics of diurnal variations was suggested. It was shown that stations located in the plain area exhibited typical night rain peaks, whereas those in the mountainous area exhibited clear afternoon peaks of precipitation diurnal variations. The precipitation peaks were associated with wind fields around the Beijing area, which were found to be highly modulated by mountain-valley circulation and urban-country circulation. The lower-tropospheric wind exhibited a clear diurnal shift in its direction from north at 0800 LST to south at 2000 LST, which reflected mountain-valley circulation. The transitions from valley to mountain wind and the opposite generally happened after sunset and sunrise, respectively, and both occurred earlier for the stations located closer to mountains. By comparing the diurnal variations of precipitation at stations in a northeast suburb, an urban area, and a southwest suburb, it was revealed that the northeast suburb group had the highest normalized rainfall frequency, but the southwest group had the lowest from late afternoon to late evening. On the contrary, in the early morning from about 0200 to 1000 LST, the southwest group and urban group had the highest normalized rainfall frequency. This pattern might originate from the combined effects of mountain-valley topography and urbanization.

Estimation of Urbanization Impacts on Local Weather: A Case Study in Northern China (Jing-Jin-Ji District)

Water

With the past rapid economic development and large population growth, Jing-Jin-Ji District has been undergoing rapid urbanization, which has caused considerable regional weather changes in local regions. In this paper, we used the Weather Research and Forecasting (WRF) model to quantitatively analyze the effects of past urbanization and potential future urbanization on the regional weather in the center of Jing-Jin-Ji District. The hydrometeorological data from two weeks in July 2019 were used to simulate the influence of urbanization on local weather in the Jing-Jin-Ji District at regional scales using a single-layer canopy parameterization scheme. To better quantify the differences in temperature and precipitation induced by urbanization, three simulation scenarios were designed, which were no urban cover (NU), current urbanization cover (CU), and full urban land cover (FU), respectively. The results showed that: (1) Urbanization progress (from NU to CU and from CU to FU) in Jing-...

Urban Modification in a Mesoscale Model and the Effects on the Local Circulation in the Pearl River Delta Region

Journal of Applied Meteorology and Climatology, 2007

The Pearl River Delta (PRD) region, located in the southern part of Guangdong Province in China, is one of the most rapidly developing regions in the world. The evolution of local and regional sea-breeze circulation (SBC) is believed to be responsible for forming meteorological conditions for high air-pollution episodes in the PRD. To understand better the impacts of urbanization and its associated urban heat island (UHI) on the local- and regional-scale atmospheric circulations over PRD, a number of high-resolution numerical experiments, with different approaches to treat the land surface and urban processes, have been conducted using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). The results show that an accurate urban land-use dataset and a proper urban land-use parameterization are critical for the mesoscale model to capture the major features of the observed UHI effect and land–sea-breeze circulations in the PR...

Impact of the Urban Heat Island Effect on Precipitation over a Complex Geographic Environment in Northern Taiwan

Journal of Applied Meteorology and Climatology, 2011

To evaluate the impacts of the urban heat island (UHI) effect on precipitation over a complex geographic environment in northern Taiwan, the next-generation mesoscale model, the Weather Research and Forecasting (WRF) model, coupled with the Noah land surface model and urban canopy model (UCM), was used to study this issue. Based on a better land use classification derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data (the MODIS case), it has significantly improved simulation results for the accumulation rainfall pattern as compared with the original U.S. Geological Survey (USGS) 25-category land use classification (the USGS case). The precipitation system was found to develop later but stronger in the urban (MODIS) case than in the nonurban (USGS) case. In comparison with the observation by radar, simulation results predicted reasonably well; not only was the rainfall system enhanced downwind of the city over the mountainous area, but it also occurred at ...