Angiogenesis (original) (raw)

Molecular basis of angiogenesis and cancer

Oncogene, 2003

Angiogenesis is a term that describes the formation of new capillaries from a pre-existing vasculature. This process is very important in physiologic conditions because it helps healing injured tissues, and in female populations it helps forming the placenta after fertilization and reconstructs the inside layer of the uterus after menstruation. Angiogenesis is the result of an intricate balance between proangiogenic and antiangiogenic factors and is now very well recognized as a powerful control point in tumor development. In this particular environment, the fine modulation among proangiogenic and antiangiogenic factors is disrupted, leading to inappropriate vessels growth. In this review, we discuss the molecular basis of angiogenesis during tumor growth and we also illustrate some of the molecules that are involved in this angiogenic switch.

Concept, mechanisms and therapeutics of angiogenesis in cancer and other diseases

Journal of pharmacy …, 2003

Angiogenesis supports normal physiology as well as contributing to the progression of various diseases including cancer. Determination of the key role of angiogenesis in cancer has led to much optimism for the development of targeted drugs without cytotoxic side-effects. Currently, research in angiogenesis therapy is robust, with the discovery of a growing number of pro-and antiangiogenic molecules. More time, however, is required to be able to elucidate the complex interactions among these molecules, how they affect vasculature and their functions in different environments. As we learn more about the molecular mechanisms of angiogenesis, a number of effective methods to treat cancer and other diseases will be developed.

The Role of Angiogenesis in Cancer Treatment

Biomedicines, 2017

A number of anti-angiogenesis drugs have been FDA-approved and are being used in cancer treatment, and a number of other agents are in different stages of clinical development or in preclinical evaluation. However, pharmacologic anti-angiogenesis strategies that arrest tumor progression might not be enough to eradicate tumors. Decreased anti-angiogenesis activity in single mechanism-based anti-angiogenic strategies is due to the redundancy, multiplicity, and development of compensatory mechanism by which blood vessels are remodeled. Improving anti-angiogenesis drug efficacy will require identification of broad-spectrum anti-angiogenesis targets. These strategies may have novel features, such as increased porosity, and are the result of complex interactions among endothelial cells, extracellular matrix proteins, growth factors, pericyte, and smooth muscle cells. Thus, combinations of anti-angiogenic drugs and other anticancer strategies such as chemotherapy appear essential for optim...

Molecular mechanisms of tumor angiogenesis and tumor progression

Journal of neuro-oncology

The formation of new blood vessels (angiogenesis) is crucial for the growth and persistence of primary solid tumors and their metastases. Furthermore, angiogenesis is also required for metastatic dissemination, since an increase in vascular density will allow easier access of tumor cells to the circulation. Induction of angiogenesis precedes the formation of malignant tumors, and increased vascularization seems to correlate with the invasive properties of tumors and thus with the malignant tumor phenotype. In the last few years, the discovery and characterization of tumor-derived angiogenesis modulators greatly contributed to our understanding of how tumors regulate angiogenesis. However, although angiogenesis appears to be a rate-limiting event in tumor growth and metastatic dissemination, a direct connection between the induction of angiogenesis and the progression to tumor malignancy is less well understood. In this review, we discuss the most recent observations concerning the m...

Angiogenesis: Managing the Culprits behind Tumorigenesis and Metastasis

Medicina (Kaunas, Lithuania), 2018

Deregulated angiogenesis has been identified as a key contributor in a number of pathological conditions including cancer. It is a complex process, which involves highly regulated interaction of multiple signalling molecules. The pro-angiogenic signalling molecule, vascular endothelial growth factor (VEGF) and its cognate receptor 2 (VEGFR-2), which is often highly expressed in majority of human cancers, plays a central role in tumour angiogenesis. Owing to the importance of tumour vasculature in carcinogenesis, tumour blood vessels have emerged as an excellent therapeutic target. The anti-angiogenic therapies have been shown to arrest growth of solid tumours through multiple mechanisms, halting the expansion of tumour vasculature and transient normalization of tumour vasculature which help in the improvement of blood flow resulting in more uniform delivery of cytotoxic agents to the core of tumour mass. This also helps in reduction of hypoxia and interstitial pressure leading to re...

Tumor angiogenesis revisited: Regulators and clinical implications

Medicinal research reviews, 2017

Since Judah Folkman hypothesized in 1971 that angiogenesis is required for solid tumor growth, numerous studies have been conducted to unravel the angiogenesis process, analyze its role in primary tumor growth, metastasis and angiogenic diseases, and to develop inhibitors of proangiogenic factors. These studies have led in 2004 to the approval of the first antiangiogenic agent (bevacizumab, a humanized antibody targeting vascular endothelial growth factor) for the treatment of patients with metastatic colorectal cancer. This approval launched great expectations for the use of antiangiogenic therapy for malignant diseases. However, these expectations have not been met and, as knowledge of blood vessel formation accumulates, many of the original paradigms no longer hold. Therefore, the regulators and clinical implications of angiogenesis need to be revisited. In this review, we discuss recently identified angiogenesis mediators and pathways, new concepts that have emerged over the pas...

Tumor Angiogenesis: Insights and Innovations

Journal of Oncology, 2010

Angiogenesis is a vital process resulting in the formation of new blood vessels. It is normally a highly regulated process that occurs during human development, reproduction, and wound repair. However, angiogenesis can also become a fundamental pathogenic process found in cancer and several other diseases. To date, the inhibition of angiogenesis has been researched at both the bench and the bedside. While several studies have found moderate improvements when treating with angiogenesis inhibitors, greater success is being seen when the inhibition of angiogenesis is combined with other traditional forms of available therapy. This review summarizes several important angiogenic factors, examines new research and ongoing clinical trials for such factors, and attempts to explain how this new knowledge may be applied in the fight against cancer and other angiogenic-related diseases. Recently, new drugs have been developed that are capable of targeting many of the regulators of angiogeneses . Currently, several drugs have been approved by the FDA for the treatment of angiogeneses-dependent diseases including Avastin for colorectal cancer, Tarceva for lung cancer, and Lucentis for macular degeneration . Many other drugs