Analysis of the mechanism by which glucose inhibits maltose induction of MAL gene expression in Saccharomyces (original) (raw)
Related papers
Intracellular maltose is sufficient to induce MAL gene expression in Saccharomyces cerevisiae
Eukaryotic cell, 2002
The presence of maltose induces M4L gene expression in Saccharomyces cells, but little is known abouthow maltose is sensed. Strains with all maltose permease genes deleted are unable to induce MAL geneexpression. In this study, we examined the role of maltose permease in maltose sensing by substituting a heterologous transporter for the native maltose permease. PmSUC2 encodes a sucrose transporter from the dicot plant Plantago major that exhibits no significant sequence homology to maltose permease. When expressed in Saccharomyces cerevisiae, PmSUC2 is capable of transporting maltose, albeit at a reduced rate. We showed that introduction of PmSUC2 restores maltose-inducible MAL gene expression to a maltose permease-null mutant and that this induction requires the MAL activator. These data indicate that intracellular maltose is sufficient to induce MAL gene expression independently of the mechanism of maltose transport. By usingstrains expressing defective mal61 mutant alleles, we de...
MAL63 codes for a positive regulator of maltose fermentation in Saccharomyces cerevisiae
Current Genetics, 1988
Genetic analysis of the MAL6 locus has previously yielded mal6 mutants which fall into a single complementation group and which are noninducibte for maltase and maltose permease. However, the strains used in these studies contained additional partially functional copies of MALl (referred to as MALlg) and MAL3 (referred to as MAL3g). Using a strain lacking MALg genes, we have isolated two classes of mutants and these classes correspond to mutations in MAL63 and MAL61, two genes of the MAL6 complex. Disruptions of MAL63 are noninducible for maltase and maltose permease and for their corresponding mRNAs. The real6 mutants are shown to map to MAL63. Inducer exclusion as a cause of the noninducible phenotype of the real63 mutations has been eliminated by constructing a ma163 mutant in a strain constitutive for maltose permease; the strain remains noninducible. These results rigorously demonstrate that MAL63 is a regulatory gene which plays a positive role in the regulation of maltose fermentation.
Molecular and Cellular Biology
Maltose fermentation in Saccharomyces carlsbergensis is dependent upon the MAL6 locus. This complex locus is composed of the MAL61 and MAL62 genes, which encode maltose permease and maltase, respectively, and a third gene, MAL63, which codes for a trans-acting positive regulatory product. In wild-type strains, expression of the MAL61 and MAL62 mRNAs and proteins is induced by maltose and induction is dependent upon the MAL63 gene. Mutants constitutively expressing the MAL61 and MAL62 gene products have been isolated in ma163 backgrounds, and the mutations which have been analyzed map to a fourth MAL6-linked gene, MAL64. Cloning and characterization of this new gene are described in this report. The results revealed that the MAL64-C alleles present in constitutive strains encode a trans-acting positive function required for constitutive expression of the MAL61 and MAL62 gene products. In inducible strains, the MAL64 gene is dispensible, as deletion of the gene had no effect on maltose fermentation or maltose-regulated induction. MAL64 encoded transcripts of 2.0 and 1.4 kilobase pairs. While both MAL64 mRNAs were constitutively expressed in constitutive strains, they were maltose inducible in wild-type strains and induction was dependent upon the MAL63 gene. The MAL63 and MAL64 genes are at least partially structurally homologous, suggesting that they control MAL61 and MAL62 transcript accumulation by similar mechanisms.
FEBS Letters, 1997
In Saccharomyces cerevisiae maltose utilization requires a functional MAL locus, each composed of three genes: MALR (gene 3) encoding a regulatory protein, MALT (gene 1) encoding maltose permease and MALS (gene 2) encoding maltase. We show that constitutive activation of the RAS/protein kinase A pathway severely reduces growth of MAL1 strains on maltose. This may be a consequence of reduction in MALT mRNA, reduced V max and increased catabolite inactivation of the MALT‐encoded maltose transporter in the MAL1 strain. Mutations in the GGS1/TPS1 gene, which restricts glucose influx and possibly affects signalling, relieve carbon catabolite repression on both maltase and maltose permease and reduce maltose permease inactivation.
Proceedings of the National Academy of Sciences, 1984
The MAL6 locus is one of five closely related unlinked loci, any one of which is sufficient for fermentation of maltose in Saccharomyces. Previous genetic analysis indicated that this locus is defined by two complementation groups, MALp and MALg. MALp reportedly is a regulatory gene required for inducible synthesis of the two enzymatic functions needed for fermentation: maltose permease and maltase. We have investigated the physical and genetic structure of the MAL6 locus, which has been isolated on a recombinant DNA plasmid. One subclone of the region, pDF-1, was found to encode a single transcribed region and to contain the MALp gene. A second subclone, pl, was shown to contain the MALg function but surprisingly had not one but two maltose-inducible transcripts. Subclones having only one of these transcribed regions lacked MALg activity. The three transcribed regions have been named MAL61 and MAL62, which correspond to MALg, and MAL63, which corresponds to MALp. This clustered arrangement of a regulatory gene adjacent to the sequences it controls has not previously been described in eukaryotes and is reminiscent of bacterial operons except that the messenger RNA molecules are not polycistronic.
Molecular and cellular biology, 1986
Maltose fermentation in Saccharomyces spp. requires the presence of a dominant MAL locus. The MAL6 locus has been cloned and shown to encode the structural genes for maltose permease (MAL61), maltase (MAL62), and a positively acting regulatory gene (MAL63). Induction of the MAL61 and MAL62 gene products requires the presence of maltose and the MAL63 gene. Mutations within the MAL63 gene produce nonfermenting strains unable to induce the two structural gene products. Reversion of these mal63 nonfermenters to maltose fermenters nearly always leads to the constitutive expression of maltase and maltose permease, and constitutivity is always linked to MAL6. We demonstrated that for one such revertant, strain C2, constitutivity did not require the MAL63 gene, since deletion disruption of this gene did not affect the constitutive expression of the structural genes. In addition, constitutivity was trans acting. Deletion disruption of the MAL6-linked structural genes for maltase and maltose ...
Metabolic Signals Trigger Glucose-Induced Inactivation of Maltose Permease in Saccharomyces
Journal of Bacteriology, 2000
Organisms such as Saccharomyces capable of utilizing several different sugars selectively ferment glucose when less desirable carbon sources are also available. This is achieved by several mechanisms. Glucose downregulates the transcription of genes involved in utilization of these alternate carbon sources. Additionally, it causes posttranslational modifications of enzymes and transporters, leading to their inactivation and/or degradation. Two glucose sensing and signaling pathways stimulate glucose-induced inactivation of maltose permease. Pathway 1 uses Rgt2p as a sensor of extracellular glucose and causes degradation of maltose permease protein. Pathway 2 is dependent on glucose transport and stimulates degradation of permease protein and very rapid inactivation of maltose transport activity, more rapid than can be explained by loss of protein alone. In this report, we characterize signal generation through pathway 2 using the rapid inactivation of maltose transport activity as an assay of signaling activity. We find that pathway 2 is dependent on HXK2 and to a lesser extent HXK1. The correlation between pathway 2 signaling and glucose repression suggests that these pathways share common upstream components. We demonstrate that glucose transport via galactose permease is able to stimulate pathway 2. Moreover, rapid transport and fermentation of a number of fermentable sugars (including galactose and maltose, not just glucose) are sufficient to generate a pathway 2 signal. These results indicate that pathway 2 responds to a high rate of sugar fermentation and monitors an intracellular metabolic signal. Production of this signal is not specific to glucose, glucose catabolism, glucose transport by the Hxt transporters, or glucose phosphorylation by hexokinase 1 or 2. Similarities between this yeast glucose sensing pathway and glucose sensing mechanisms in mammalian cells are discussed.
Molecular and General Genetics MGG, 2000
The REG1 gene encodes a regulatory subunit of the type-1 protein phosphatase (PP1) Glc7 in Saccharomyces cerevisiae, which directs the catalytic subunit to substrates involved in glucose repression. Loss of REG1 relieves glucose repression of many genes, including the MAL structural genes that encode the maltose fermentation enzymes. In this report, we explore the role of Reg1p and its homolog Reg2p in glucose-induced inactivation of maltose permease. Glucose stimulates the proteolysis of maltose permease and very rapid loss of maltose transport activity ± more rapid than can be explained by loss of the permease protein alone. In a reg1D strain we observe a signi®cantly reduced rate of glucose-induced proteolysis of maltose permease, and the rapid loss of maltose transport activity does not occur. Instead, surprisingly, the slow rate of proteolysis of maltose permease is accompanied by an increase in maltose transport activity. Loss of Reg2p modestly reduces the rates of both glucose-induced proteolysis of maltose permease and inactivation of maltose transport activity. Overexpression of Reg2p in a reg1D strain suppresses the eect on maltose permease proteolysis and partially restores the inactivation of maltose transport activity, but does not aect the insensitivity of MAL gene expression to repression by glucose observed in this strain. Thus, protein phosphatase type-1 (Glc7p-Reg1p and Glc7p-Reg2p) plays a role in transduction of the glucose signal during glucose-induced proteolysis of maltose permease, but only Glc7p-Reg1p is involved in glucose-induced inactivation of maltose transport activity and glucose repression of MAL gene expression. Overexpression of REG1 partially restores proteolysis of maltose permease in a grr1D strain, which lacks glucose signaling, but does not rescue rapid inactivation of maltose transport activity or sensitivity to glucose repression. A model for the role of Reg1p and Reg2p in glucose signaling pathways is discussed. We also uncovered a previously unrecognized G2/M delay in the grr1D but not the reg1D strains, and this delay is suppressed by REG1 overexpression. The G1/S delay seen in grr1D mutants is slightly suppressed as well, but REG1 overexpression does not suppress other grr1D phenotypes such as insensitivity to glucose repression.
Genetics, 1997
We report the sequence of several MALactivator genes, including inducible, constitutive, and noninducible alleles of MAL23, MAL43, MAL63, and ma164. Constitutive alleles of MAL23 and MAL43 vary considerably from inducible alleles in their C-terminal domain, with many of the alterations clustered and common to both alleles. The 27 alterations from residues 238-461 of Ma143-C protein are sufficient for constitutivity, but the minimal number of alterations needed for the constitutive phenotype could not be determined. The sequence of ma164, a nonfunctional homologue of MAL63, revealed that Ma164p is 85% identical to Ma163p. Two mutations that activate ma164 and cause constitutivity are nonsense mutations resulting in truncated proteins of 306 and 282 residues. We conclude that the C-terminal region of the MALactivator, from residues 283-470, contains a maltose-responsive negative regulatory domain, and that extensive mutation or deletion of the entire region causes loss of the negative regulatory function. Additionally, certain sequence elements in the region appear to be necessary for efficient induction of the full-length Ma163 activator protein. These studies highlight the role of ectopic recombination as an important mechanism of mutagenesis of the telomere-associated family of MAL loci. M ALTOSE fermentation in Saccharomyces requires the presence of one of five unlinked MAL loci: M A L I , MAL2, MAL3, MAL4 and MAL6 (reviewed in NEEDLEMAN 1991). Each locus encodes three gene products essential for maltose fermentation. Genes 1 and 2 encode maltose permease and maltase, respectively; gene 3 encodes the MAL transcriptional activator protein (HONG and MARMuR 1986; KIM and MICHELS 1988; CHENG and MICHELS 1989). At MAL6, the three genes are referred to as MAL61, MAL62, and MAL63 (see Figure 1). Transcription of the structural genes is induced by maltose and repressed by glucose (NEEDLE-MAN et al. 1984; CHARRON et al. 1986; LEVINE et al. 1992; HU et al. 1995). The MALactivator mediates both regulatory processes but is only one of several factors controlling glucose repression of maltose fermentation (Hu et al. 1995). Constitutive mutations, usually obtained by reversion of a nonfermenting strain to Mal', have been reported at all of the MAL loci, including MAL4 (WINGE and