Temporal Bayesian Knowledge Bases – Reasoning about uncertainty with temporal constraints (original) (raw)
2012, Expert Systems with Applications
Time is ubiquitous. Accounting for time and its interaction with change is crucial to modeling the dynamic world, especially in domains whose study of data is sensitive to time such as in medical diagnosis, financial investment, and natural language processing, to name a few. We present a framework that incorporates both uncertainty and time in its reasoning scheme. It is based on an existing knowledge representation called Bayesian Knowledge Bases. It provides a graphical representation of knowledge, time and uncertainty, and enables probabilistic and temporal inferencing. The reasoning scheme is probabilistically sound and the fusion of temporal fragments is well defined. We will discuss some properties of this framework and introduce algorithms to ensure groundedness during the construction of the model. The framework has been applied to both artificial and real world scenarios.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.