Unnested islands of period doublings in an injected semiconductor laser (original) (raw)

Abstract

We present a theoretical study of unnested period-doubling islands in three-dimensional rate equations modeling a semiconductor laser subject to external optical injection. In this phenomenon successive curves of period doublings are not arranged in nicely nested islands, but intersect each other. This overall structure is globally organized by several codimension-2 bifurcations. As a consequence, the chaotic region existing inside an unnested island of period doublings can be entered not only via a period-doubling cascade but also via the breakup of a torus, and even via the sudden appearance of a chaotic attractor. In order to fully understand these different chaotic transitions we reveal underlying global bifurcations and we show how they are connected to codimension-2 bifurcation points. Unnested islands of period doublings appear to be generic and hence must be expected in a large class of dynamical systems.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (38)

  1. G.H.M. van Tartwijk, and D. Lenstra, Quantum Semiclassic. Opt. 7, 87 ͑1995͒.
  2. J. Sacher, D. Baums, P. Panknin, W. Elsa ¨ßer, and E.O. Go ¨bel, Phys. Rev. A 45, 1893 ͑1992͒.
  3. S.M. Wieczorek, B. Krauskopf, and D. Lenstra, Opt. Commun. 172, 279 ͑1999͒.
  4. S.M. Wieczorek, B. Krauskopf, and D. Lenstra, Opt. Commun. 183, 215 ͑2000͒.
  5. B. Krauskopf, S. Wieczorek, and D. Lenstra, Appl. Phys. Lett. 77, 1611 ͑2000͒.
  6. ͓6͔ Fundamental Issues of Nonlinear Laser Dynamics: Concepts, Mathematics, Physics, and Applications, edited by B. Krauskopf and D. Lenstra, AIP Conf. Proc. No. 548 ͑AIP, Melville, NY, 2000͒.
  7. S. Sinha, and W.L. Ditto, Phys. Rev. Lett. 81, 2156 ͑1998͒.
  8. C.R. Mirasso, P. Colet, and P. Garcia-Ferna ´ndez, IEEE Photo- nics Technol. Lett. 8, 299 ͑1996͒.
  9. C.R. Mirasso, in Fundamental Issues of Nonlinear Laser Dy- namics: Concepts, Mathematics, Physics, and Applications ͑Ref. ͓6͔͒, pp. 112-127.
  10. ͓10͔ G.D. VanWiggeren and R. Roy, Science 279, 1198 ͑1997͒.
  11. R. Roy, in Fundamental Issues of Nonlinear Laser Dynamics: Concepts, Mathematics, Physics, and Applications ͑Ref. ͓6͔͒, pp. 260-278.
  12. ͓12͔ B. Krauskopf, in Fundamental Issues of Nonlinear Laser Dy- namics: Concepts, Mathematics, Physics, and Applications ͑Ref. ͓6͔͒, pp. 1-30.
  13. ͓13͔ H.W. Broer and B. Krauskopf, in Fundamental Issues of Non- linear Laser Dynamics: Concepts, Mathematics, Physics, and Applications ͑Ref. ͓6͔͒, pp. 31-53.
  14. ͓14͔ H.F. Chen and J.M. Liu, IEEE J. Quantum Electron. 36, 27 ͑2000͒.
  15. T.B. Simpson, J.M. Liu, K.F. Huang, and K. Tai, Quantum Semiclassic. Opt. 9, 765 ͑1997͒.
  16. E. Ott, Chaos in Dynamical Systems ͑Cambridge University Press, Cambridge, 1993͒.
  17. ͓17͔ Yu.A. Kuznetsov, Elements of Applied Bifurcation Theory, Vol. 112 of Applied Mathematical Sciences Series ͑Springer- Verlag, Berlin, 1995͒.
  18. W. Forysiak, J.V. Moloney, and R.G. Harrison, Physica D 53, 162 ͑1991͒.
  19. B. Krauskopf, G.R. Gray, and D. Lenstra, Phys. Rev. E 58, 7190 ͑1998͒.
  20. ͓20͔ P. Cvitanovic, Universality in Chaos: A Reprint Selection ͑Adam Hilger, Bristol, 1984͒.
  21. Y. Pomeau, and P. Mannevile, Commun. Math. Phys. 74, 189 ͑1980͒.
  22. S. Ostlund, D. Rand, J. Sethna, and E. Siggia, Physica D 8, 303 ͑1983͒.
  23. C. Grebogi, E. Ott, and J.A. Yorke, Phys. Rev. Lett. 48, 1507 ͑1982͒.
  24. C. Grebogi and E. Ott, Physica D 7, 181 ͑1983͒.
  25. D. Dangoisse, P. Glorieux, and D. Hennequin, Phys. Rev. Lett. 57, 2657 ͑1986͒.
  26. J.R. Tredicce, F.T. Arecchi, G.L. Lippi, and G.P. Puccioni, J. Opt. Soc. Am. B 2, 173 ͑1985͒.
  27. D. Lenstra, G.H.M. Tartwijk, W.A. van der Graaf, and P.C. De Jagher, Proc. SPIE 2039, 11 ͑1993͒.
  28. T.B. Simpson, J.M. Liu, A. Gavrielides, V. Kovanis, and P.M. Alsing, Appl. Phys. Lett. 64, 3539 ͑1994͒.
  29. A. Hohl and A. Gavrielides, Phys. Rev. Lett. 82, 1148 ͑1999͒.
  30. S. Wieczorek, B. Krauskopf, and Daan Lenstra, Opt. Lett. 26, 816 ͑2001͒.
  31. H. Broer, C. Simo, and J.C. Tatjer, Nonlinearity 11, 667 ͑1998͒.
  32. FIG. 18. Numerical evidence for the heteroclinic tangency sketched in Fig. 17; ϭ0.56 and K takes the values 0.3293, 0.329, and 0.3288 from ͑a͒ to ͑c͒.
  33. Yu. Ilyashenko and Li Weigu, Nonlocal Bifurcations, Vol. 66 of Mathematical Surveys and Monographs ͑American Math- ematical Society, Providence, RI, 1999͒.
  34. E. Doedel, T. Fairgrieve, B. Sandstede, A. Champneys, Yu. Kuznetsov, and X. Wang, computer code AUTO 97 ͑http:// indy.cs.concordia.ca/auto/main.html͒.
  35. A. Back, J. Guckenheimer, M.R. Myers, F.J. Wicklin, and P.A. Worfolk, Not. Am. Math. Soc. 39, 303 ͑1992͒.
  36. B. Krauskopf and H.M. Osinga, J. Comput. Phys. 146, 404 ͑1998͒.
  37. B. Krauskopf and H. M. Osinga, in Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, Vol. 119 of IMA Volumes in Mathematics and its Applica- tions, edited by E.J. Doedel and L.S. Tuckerman ͑Springer- Verlag, Berlin, 2000͒, pp. 199-208.
  38. ͓37͔ S. Wiggins, Introduction to Applied Nonlinear Dynamical Sys- tems and Chaos ͑Springer-Verlag, New York, 1990͒.