Dimension of complete simple games with minimum (original) (raw)

Weighted majority games have the property that players are totally ordered by the desirability relation (introduced by Isbell in [J.R. Isbell, A class of majority games, Quarterly Journal of Mathematics, 7 (1956) 183-187]) because weights induce it. Games for which this relation is total are called complete simple games. Taylor and Zwicker proved in [A.D. Taylor, W.S. Zwicker, Weighted voting, multicameral representation, and power, Games and Economic Behavior 5 (1993) 170-181] that every simple game (or monotonic finite hypergraph) can be represented by an intersection of weighted majority games and consider the dimension of a game as the needed minimum number of them to get it. They provide the existence of non-complete simple games of every dimension and left open the problem for complete simple games.