Supplementary Information for ``Rapid planetesimal formation in turbulent circumstellar discs (original) (raw)
Related papers
Rapid planetesimal formation in turbulent circumstellar disks
Nature, 2007
The initial stages of planet formation in circumstellar gas discs proceed via dust grains that collide and build up larger and larger bodies 1 . How this process continues from metre-sized boulders to kilometre-scale planetesimals is a major unsolved problem 2 : boulders stick together poorly 3 , and spiral into the protostar in a few hundred orbits due to a head wind from the slower rotating gas 4 . Gravitational collapse of the solid component has been suggested to overcome this barrier 1, 5, 6 . Even low levels of turbulence, however, inhibit sedimentation of solids to a sufficiently dense midplane layer 2, 7 , but turbulence must be present to explain observed gas accretion in protostellar discs 8 . Here we report the discovery of efficient gravitational collapse of boulders in locally overdense regions in the midplane. The boulders concentrate initially in transient high pressures in the turbulent gas 9 , and these concentra-1 arXiv:0708.3890v1 [astro-ph]
2009
The gravitational instability of a dust layer is one of the scenarios for planetesimal formation. If the density of a dust layer becomes sufficiently high as a result of the sedimentation of dust grains toward the midplane of a protoplanetary disk, the layer becomes gravitationally unstable and spontaneously fragments into planetesimals. Using a shearing box method, we performed local N-body simulations of gravitational instability of a dust layer and subsequent coagulation without gas and investigated the basic formation process of planetesimals. In this paper, we adopted the accretion model as a collision model. A gravitationally bound pair of particles is replaced by a single particle with the total mass of the pair. This accretion model enables us to perform long-term and large-scale calculations. We confirmed that the formation process of planetesimals is the same as that in the previous paper with the rubble pile models. The formation process is divided into three stages: the ...
2016
We performed N-body simulations of a dust layer without a gas component and examined the formation process of planetesimals. We found that the formation process of planetesimals can be divided into three stages: the formation of non-axisymmetric wake-like structures, the creation of aggregates, and the collisional growth of the aggregates. Finally, a few large aggregates and many small aggregates are formed. The mass of the largest aggregate is larger than the mass predicted by the linear perturbation theory. We examined the dependence of system parameters on the planetesimal formation. We found that the mass of the largest aggregates increase as the size of the computational domain increases. However the ratio of the aggregate mass to the total mass M aggr /M total is almost constant 0.8 − 0.9. The mass of the largest aggregate increases with the optical depth and the Hill radius of particles.
2010
We investigate the formation process of planetesimals from the dust layer by the gravitational instability in the gas disk using local N-body simulations. The gas is modeled as a background laminar flow. We study the formation process of planetesimals and its dependence on the strength of the gas drag. Our simulation results show that the formation process is divided into three stages qualitatively: the formation of wake-like density structures, the creation of planetesimal seeds, and their collisional growth. The linear analysis of the dissipative gravitational instability shows that the dust layer is secularly unstable although Toomre's Q value is larger than unity. However, in the initial stage, the growth time of the gravitational instability is longer than that of the dust sedimentation and the decrease in the velocity dispersion. Thus, the velocity dispersion decreases and the disk shrinks vertically. As the velocity dispersion becomes sufficiently small, the gravitational...
Astronomy and Astrophysics, 2009
Context. As accretion in protoplanetary disks is enabled by turbulent viscosity, the border between active and inactive (dead) zones constitutes a location where there is an abrupt change in the accretion flow. The gas accumulation that ensues triggers the Rossby wave instability, which in turn saturates into anticyclonic vortices. It has been suggested that the trapping of solids within them leads to a burst of planet formation on very short timescales. Aims. We study in the formation and evolution of the vortices in greater detail, focusing on the implications for the dynamics of embedded solid particles and planet formation. Methods. We performed two-dimensional global simulations of the dynamics of gas and solids in a non-magnetized thin protoplanetary disk with the Pencil code. We used multiple particle species of radius 1, 10, 30, and 100 cm. We computed the particles' gravitational interaction by a particle-mesh method, translating the particles' number density into surface density and computing the corresponding self-gravitational potential via fast Fourier transforms. The dead zone is modeled as a region of low viscosity. Adiabatic and locally isothermal equations of state are used. Results. The Rossby wave instability is triggered under a variety of conditions, thus making vortex formation a robust process. Inside the vortices, fast accumulation of solids occurs and the particles collapse into objects of planetary mass on timescales as short as five orbits. Because the drag force is size-dependent, aerodynamical sorting ensues within the vortical motion, and the first bound structures formed are composed primarily of similarly-sized particles. In addition to erosion due to ram pressure, we identify gas tides from the massive vortices as a disrupting agent of formed protoplanetary embryos. We find evidence that the backreaction of the drag force from the particles onto the gas modifies the evolution of the Rossby wave instability, with vortices being launched only at later times if this term is excluded from the momentum equation. Even though the gas is not initially gravitationally unstable, the vortices can grow to Q ≈ 1 in locally isothermal runs, which halts the inverse cascade of energy towards smaller wavenumbers. As a result, vortices in models without self-gravity tend to rapidly merge towards a m=2 or m=1 mode, while models with self-gravity retain dominant higher order modes (m=4 or m=3) for longer times. Non-selfgravitating disks thus show fewer and stronger vortices. We also estimate the collisional velocity history of the particles that compose the most massive embryo by the end of the simulation, finding that the vast majority of them never experienced a collision with another particle at speeds faster than 1m s −1 . This result lends further support to previous studies showing that vortices provide a favorable environment for planet formation.
On circumstellar discs in binary systems Influence of planetary bodies
Context. Today approximately 60 planets have already been discoverd in systems harboring two stars where some of them have binary separations around or smaller than 20 AU. In these systems the gaseous disc together with particles moving in it is exposed to the gravitational forces of the binary and thus strongly influenced by the stars. Aims. In this paper we present first our 2D hydrodynamical code written to work partly on a graphics card and second study the evolution of several thousands of selfgravitating particles embedded in an viscous and radiative circumstellar disc in a binary star system. Methods. We perform hydrodynamical simulations of a binary star system assuming coplanarity of the disc, particles, host star and secondary star. We use a grid based staggered mesh code based on the ideas of ZEUS-2D, where we implemented the FARGO algorithm and an additional energy equation handling radiative cooling according to opacity tables. Results. We show that our program is performing well and additionally that we are able to run simulations with up to 2048 selfgravi-tating particles interacting with a gas disc. Conclusions. We show that 0.01 M gas disc can have significant influence on roughly Moon sized particles when interacting solely gravitationaly.
N ‐Body Simulation of Planetesimal Formation through Gravitational Instability of a Dust Layer
The Astrophysical Journal, 2007
We performed N-body simulations of a dust layer without a gas component and examined the formation process of planetesimals. We found that the formation process of planetesimals can be divided into three stages: the formation of non-axisymmetric wake-like structures, the creation of aggregates, and the collisional growth of the aggregates. Finally, a few large aggregates and many small aggregates are formed. The mass of the largest aggregate is larger than the mass predicted by the linear perturbation theory. We examined the dependence of system parameters on the planetesimal formation. We found that the mass of the largest aggregates increase as the size of the computational domain increases. However the ratio of the aggregate mass to the total mass M aggr /M total is almost constant 0.8 − 0.9. The mass of the largest aggregate increases with the optical depth and the Hill radius of particles.
Formation of the Planetary Sequence in a Highly Flattened Disk of Frequently Colliding Planetesimals
Proceedings of the International Astronomical Union
The kinetic theory is used to study the evolution of the self-gravitating disk of planetesimals. The effects of frequent collisions between planetesimals are taken into account by using a Krook integral in the Boltzmann kinetic equation. It is shown that as a result of an aperiodic collision-dissipative instability of small gravity disturbances the disk is subdivided into numerous dense fragments. These can eventually condense into the planetary sequence.
Gravoturbulent Formation of Planetesimals
The Astrophysical Journal, 2006
We explore the effect of magnetorotational turbulence on the dynamics and concentrations of boulders in local box simulations of a sub-Keplerian protoplanetary disc. The solids are treated as particles each with an independent space coordinate and velocity. We find that the turbulence has two effects on the solids. 1) Meter and decameter bodies are strongly concentrated, locally up to a factor 100 times the average dust density, whereas decimeter bodies only experience a moderate density increase. The concentrations are located in large scale radial gas density enhancements that arise from a combination of turbulence and shear. 2) For meter-sized boulders, the concentrations cause the average radial drift speed to be reduced by 40%. We find that the densest clumps of solids are gravitationally unstable under physically reasonable values for the gas column density and for the dust-to-gas ratio due to sedimentation. We speculate that planetesimals can form in a dust layer that is not in itself dense enough to undergo gravitational fragmentation, and that fragmentation happens in turbulent density fluctuations in this sublayer. Subject headings: instabilities -MHD -planetary systems: formation -planetary systems: protoplanetary disks -turbulence 1 The code is available at
N-body simulations of planet formation via pebble accretion
Astronomy and Astrophysics, 2021
Aims. The connection between initial disc conditions and final orbital and physical properties of planets is not well-understood. In this paper, we numerically study the formation of planetary systems via pebble accretion and investigate the effects of disc properties such as masses, dissipation timescales, and metallicities on planet formation outcomes. Methods. We improved the N-body code SyMBA that was modified for our Paper I by taking account of new planet-disc interaction models and type II migration. We adopted the 'two-α' disc model to mimic the effects of both the standard disc turbulence and the mass accretion driven by the magnetic disc wind. Results. We successfully reproduced the overall distribution trends of semi-major axes, eccentricities, and planetary masses of extrasolar giant planets. There are two types of giant planet formation trends, depending on whether or not the disc's dissipation timescales are comparable to the planet formation timescales. When planet formation happens fast enough, giant planets are fully grown (Jupiter mass or higher) and are distributed widely across the disc. On the other hand, when planet formation is limited by the disc's dissipation, discs generally form low-mass cold Jupiters. Our simulations also naturally explain why hot Jupiters (HJs) tend to be alone and how the observed eccentricity-metallicity trends arise. The low-metallicity discs tend to form nearly circular and coplanar HJs in situ, because planet formation is slower than high-metallicity discs, and thus protoplanetary cores migrate significantly before gas accretion. The high-metallicity discs, on the other hand, generate HJs in situ or via tidal circularisation of eccentric orbits. Both pathways usually involve dynamical instabilities, and thus HJs tend to have broader eccentricity and inclination distributions. When giant planets with very wide orbits ("super-cold Jupiters") are formed via pebble accretion followed by scattering, we predict that they belong to metal-rich stars, have eccentric orbits, and tend to have (∼80%) companions interior to their orbits.