Equilibrium and Out-of-Equilibrium Dynamics in Confined Polymers and Other Glass Forming Systems by Dielectric Spectroscopy and Calorimetric Techniques (original) (raw)

Abstract

Glassy dynamics under nanoscale confinement is currently a topic under intense debate in soft matter physics. The reason is that this kind of studies may deliver important insight on the glassy dynamics in general. Furthermore, from a technological point of view, there exists a rising interest in the understanding of how properties are modified at the nanoscale in comparison to the corresponding bulk system. Within this context, this chapter critically discusses the experimental findings in the field. The vast majority of results concerns thin polymer films. However, other geometries of confinement, such as polymer nanocomposites and nanospheres, are considered as well. Special attention is devoted to the kind of information achieved by a specific technique. Within this context, the ability of dielectric and calorimet-ric techniques is highlighted. Particular attention is devoted to the determination of the different aspects of glassy dynamics in confinement, that is, the equilibrium dynamics in terms of the rate of spontaneous fluctuations as probed by experiments where a perturbation in the linear regime is applied, on the one hand, and the out-of-equilibrium dynamics in terms of thermal glass transition temperature (T g) and the physical aging on the other. In the latter case, the application of a temperature ramp for T g measurements and the recovery of equilibrium in physical aging imply the application of large perturbations, in particular with amplitude well beyond that of spontaneous fluctuations. It is demonstrated how, in view of numerous experimental results, the two aspects are not one-to-one related in confinement. Specifically, the reduction in T g and the acceleration of equilibrium recovery in the aging regime does not imply a concomitant speed-up of the rate of spontaneous fluctuations, which is in several cases found to be unaltered in comparison to the bulk. Finally, a description of suitable frameworks to describe such phenomenology is presented with special attention to the free volume hole diffusion (FVHD) model. This is shown to quantitatively catch the acceleration of physical aging and the T g depression with no need to assume any acceleration on the intrinsic molecular mobility of the glass former.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (132)

  1. Adam G, Gibbs JH (1965) On temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43(1):139-146
  2. Alfrey T, Goldfinger G, Mark H (1943) The apparent second-order transition point of polystyrene. J Appl Phys 14(12):700-705
  3. Amanuel S, Gaudette AN, Sternstein SS (2008) Enthalpic relaxation of silicapolyvinyl acetate nanocomposites. J Polym Sci Pol Phys 46(24):2733-2740
  4. Baeumchen O, McGraw JD, Forrest JA, Dalnoki-Veress K (2012) Reduced glass transition temperatures in thin polymer films: surface effect or artifact? Phys Rev Lett 109(5):055701
  5. Bahar I, Erman B, Kremer F, Fischer E (1992) Segmental motions of cis-polyisoprene in the bulk state-interpretation of dielectric-relaxation data. Macromolecules 25(2):816-825
  6. Baker EA, Rittigstein P, Torkelson JM, Roth CB (2009) Streamlined ellipsometry procedure for characterizing physical aging rates of thin polymer films. J Polym Sci Pt B-Polym Phys 47(24, SI):2509-2519
  7. Bansal A, Yang H, Li C, Cho K, Benicewicz B, Kumar S, Schadler L (2005) Quantita- tive equivalence between polymer nanocomposites and thin polymer films. Nat Mater 4(9): 693-698
  8. Berthier L, Biroli G, Bouchaud JP, Cipelletti L, Masri L'Hôte D, Ladieu F, Pierno M (2005) Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310(5755):1797-1800
  9. Boucher VM, Cangialosi D, Alegría A, Colmenero J (2010) Enthalpy recovery of pmma/silica nanocomposites. Macromolecules 43(18):7594-7603
  10. Boucher VM, Cangialosi D, Alegría A, Colmenero J (2012) Enthalpy recovery in nanometer to micrometer thick ps films. Macromolecules 45(12):5296-5206
  11. Boucher VM, Cangialosi D, Alegría A, Colmenero J (2012) Time dependence of the segmental relaxation time of poly(vinyl acetate)-silica nanocomposites. Phys Rev E 86(4, Part 1): 041501
  12. Boucher VM, Cangialosi D, Alegria A, Colmenero J (2014) Accounting for the thickness dependence of the Tg in supported PS films via the volume holes diffusion model. Thermochim Acta 575:233-237
  13. Boucher VM, Cangialosi D, Alegría A, Colmenero J, Gonzalez-Irun J, Liz-Marzan LM (2010) Accelerated physical aging in pmma/silica nanocomposites. Soft Matter 6(14):3306-3317
  14. Boucher VM, Cangialosi D, Alegría A, Colmenero J, Gonzalez-Irun J, Liz-Marzan LM (2011) Physical aging in pmma/silica nanocomposites: enthalpy and dielectric relaxation. J Non- Cryst Sol 357(2, SI): 605-609
  15. Boucher VM, Cangialosi D, Alegría A, Colmenero J, Pastoriza-Santos I, Liz-Marzan LM (2011) Physical aging of polystyrene/gold nanocomposites and its relation to the calorimetric t(g) depression. Soft Matter 7(7):3607-3620
  16. Boucher VM, Cangialosi D, Yin H, Schoenhals A, Alegría A, Colmenero J (2012) T-g depres- sion and invariant segmental dynamics in polystyrene thin films. Soft Matter 8(19):5119-5122
  17. Callen H, Greene R (1952) On a theorem of irreversible thermodynamics. Phys Rev 86(5): 702-710
  18. Cangialosi D, Alegría A, Colmenero J (2007) Route to calculate the length scale for the glass transition in polymers. Phys Rev E 76(1, 1): 011514
  19. Cangialosi D, Alegria A, Colmenero J (2007) "Self-concentration" effects on the dynamics of a polychlorinated biphenyl diluted in 1,4-polybutadiene. J Chem Phys 126(20)
  20. Cangialosi D, Boucher V, Alegría A, Colmenero J (2013) Direct evidence of two equilibration mechanisms in glassy polymers. Phys Rev Lett 111:095701
  21. Cangialosi D, Boucher VM, Alegría A, Colmenero J (2011) Free volume holes diffusion to describe physical aging in poly(mehtyl methacrylate)/silica nanocomposites. J Chem Phys 135(1):014901
  22. Cangialosi D, Boucher VM, Alegría A, Colmenero J (2012) Enhanced physical aging of polymer nanocomposites: the key role of the area to volume ratio. Polymer 53(6):1362-1362
  23. Cangialosi D, Boucher VM, Alegría A, Colmenero J (2013) Physical aging in polymers and polymer nanocomposites: recent results and open questions. Soft Matter 9(36):8619-8630
  24. Cangialosi D, Boucher VM, Alegría A, Colmenero J (2013) Volume recovery of polystyrene/silica nanocomposites. J Polym Sci Part B: Polym Phys 51(10):847-853
  25. Cangialosi D, Schwartz G, Alegria A, Colmenero J (2005) Combining configurational entropy and self-concentration to describe the component dynamics in miscible polymer blends. J Chem Phys 123(14)
  26. Cangialosi D, Wübbenhorst M, Groenewold J, Mendes E, Schut H, van Veen A, Picken SJ (2004) Physical aging of polycarbonate far below the glass transition temperature: evidence for the diffusion mechanism. Phys Rev B 70:224213
  27. Clough A, Peng D, Yang Z, Tsui OKC (2011) Glass transition temperature of polymer films that slip. Macromolecules 44(6):1649-1653
  28. Curro JG, Lagasse RR, Simha R (1982) Diffusion model for volume recovery in glasses. Macromolecules 15(6):1621-1626
  29. Debenedetti PG (1996) Metastable liquids: concepts and principles. Princeton University Press, Princeton
  30. DeMaggio GB, Frieze WE, Gidley DW, Zhu M, Hristov HA, Yee AF (1997) Interface and surface effects on the glass transition in thin polystyrene films. Phys Rev Lett 78:1524-1527
  31. J, Xue G, Dai Q, Cheng R (1993) Glass-transition temperature of polystyrene micropar- ticles. Polymer 34(15):3325-3327
  32. Donati C, Douglas J, Kob W, Plimpton S, Poole P, Glotzer S (1998) Stringlike cooperative motion in a supercooled liquid. Phys Rev Lett 80(11):2338-2341
  33. Donth E (1982) The size of cooperatively rearranging regions at the glass-transition. J Non Cryst Sol 53(3):325-330
  34. Donth E, Korus J, Hempel E, Beiner M (1997) Comparison of dsc heating rate and hcs frequency at the glass transition. Thermochim Acta 305(6):239-239
  35. Efremov M, Olson E, Zhang M, Zhang Z, Allen L (2003) Glass transition in ultrathin polymer films: calorimetric study. Phys Rev Lett 91(8):085703
  36. Efremov MY, Olson EA, Zhang M, Zhang ZS, Allen LH (2004) Probing glass transition of ultrathin polymer films at a time scale of seconds using fast differential scanning calorimetry. Macromolecules 37(12):4607-4616
  37. Ellison CJ, Torkelson JM (2003) The distribution of glass-transition temperatures in nanoscop- ically confined glass formers. Nat Mater 2(10):695-700
  38. Fakhraai Z, Forrest JA (2005) Probing slow dynamics in supported thin polymer films. Phys Rev Lett 95(2):025701
  39. Fakhraai Z, Forrest JA (2008) Measuring the surface dynamics of glassy polymers. Science 319(5863):600-604
  40. Feng S, Li Z, Liu R, Mai B, Wu Q, Liang G, Gao H, Zhu F (2013) Glass transition of polystyrene nanospheres under different confined environments in aqueous dispersions. Soft Matter 9(18):4614-4620
  41. Forrest J, Dalnoki-Veress K, Stevens J, Dutcher J (1996) Effect of free surfaces on the glass transition temperature of thin polymer films. Phys Rev Lett 77(10):2002-2005
  42. Forrest J, DalnokiVeress K, Dutcher J (1997) Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys Rev E 56(5, B):5705-5716
  43. Frieberg B, Glynos E, Sakellariou G, Green PF (2012) Physical aging of star-shaped macro- molecules. ACS Macro Lett 1(5):636-640
  44. Fryer D, Peters R, Kim E, Tomaszewski J, de Pablo J, Nealey P, White C, Wu W (2001) Dependence of the glass transition temperature of polymer films on interfacial energy and thickness. Macromolecules 34(16):5627-5634
  45. Fukao K, Koizumi H (2008) Glassy dynamics in thin films of polystyrene. Phys Rev E 77(2, Part 1):021503
  46. Fukao K, Miyamoto Y (2000) Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene. Phys Rev E 61(2):1743-1754
  47. Gao S, Koh YP, Simon SL (2013) Calorimetric glass transition of single polystyrene ultrathin films. Macromolecules 46(2):562-570
  48. Gaur U, Wunderlich B (1980) Study of microphase separation in block co-polymers of styrene and alpha-methylstyrene in the glass-transition region using quantitative thermal-analysis. Macromolecules 13(6):1618-1625
  49. Ge S, Pu Y, Zhang W, Rafailovich M, Sokolov J, Buenviaje C, Buckmaster R, Overney R (2000) Shear modulation force microscopy study of near surface glass transition temperatures. Phys Rev Lett 85(11):2340-2343
  50. de Gennes P (2000) Glass transitions in thin polymer films. Eur Phys J E 2(3):201-203
  51. Glynos E, Frieberg B, Oh H, Liu M, Gidley DW, Green PF (2011) Role of molecular archi- tecture on the vitrification of polymer thin films. Phys Rev Lett 106(12):128301
  52. Grohens Y, Brogly M, Labbe C, David MO, Schultz J (1998) Glass transition of stereoregular poly(methyl methacrylate) at interfaces. Langmuir 14(11):2929-2932
  53. Guo Y, Zhang C, Lai C, Priestley RD, D'Acunzi M, Fytas G (2011) Structural relaxation of polymer nanospheres under soft and hard confinement: isobaric versus isochoric conditions. ACS Nano 5(7):5365-5373
  54. Hartmann L, Gorbatschow W, Hauwede J, Kremer F (2002) Molecular dynamics in thin films of isotactic poly(methyl methacrylate). Eur Phys J E 8(2):145-154
  55. Hecksher T, Olsen NB, Niss K, Dyre JC (2010) aging of molecular glasses studied by a device allowing for rapid thermal equilibration. J Chem Phys 133(17):174514
  56. Hempel E, Hempel G, Hensel A, Schick C, Donth E (2000) Characteristic length of dynamic glass transition near t-g for a wide assortment of glass-forming substances. J Phys Chem B 104(11):2460-2466
  57. Hutchinson JM (1995) Physical aging of polymers. Prog Pol Sci 20(4):703-760
  58. Huth H, Minakov AA, Schick C (2006) Differential ac-chip calorimeter for glass transition measurements in ultrathin films. J Polym Sci Pt B-Polym Phys 44(20):2996-3005
  59. Inoue R, Kanaya T, Nishida K, Tsukushi I, Telling MTF, Gabrys BJ, Tyagi M, Soles C, Wu WI (2009) Glass transition and molecular mobility in polymer thin films. Phys Rev E 80(3):031802
  60. Jackson CL, McKenna GB (1991) The glass-transition of organic liquids confined to small pores. J Non-Cryst Sol 131(Part 1):221-224
  61. Kawana S, Jones RAL (2003) Effect of physical ageing in thin glassy polymer films. Eur Phys J E 10(3):223-230
  62. Keddie JL, Jones RAL, Cory RA (1994) Size-dependent depression of the glass-transition temperature in polymer-films. Europhys Lett 27(1):59-64
  63. Kim JH, Jang J, Zin WC (2000) Estimation of the thickness dependence of the glass transition temperature in various thin polymer films. Langmuir 16(9):4064-4067
  64. Koh YP, McKenna GB, Simon SL (2006) Calorimetric glass transition temperature and absolute heat capacity of polystyrene ultrathin films. J Polym Sci Pt B-Polym Phys 44(24):3518-3527
  65. Koh YP, Simon SL (2008) Structural relaxation of stacked ultrathin polystyrene films. J Polym Sci Pt B-Polym Phys 46(24):2741-2753
  66. Kovacs AJ (1963) Glass transition in amorphous polymers: a phenomenological study. Fortsch Hochpolym Fo 3(1/2):394-508
  67. Labahn D, Mix R, Schoenhals A (2009) Dielectric relaxation of ultrathin films of supported polysulfone. Phys Rev E 79(1, Part 1):011801
  68. Lee A, Lichtenhan JD (1998) Viscoelastic responses of polyhedral oligosilsesquioxane rein- forced epoxy systems. Macromolecules 31(15):4970-4974
  69. Lipson JEG, Milner ST (2009) Percolation model of interfacial effects in polymeric glasses. Eur Phys J B 72(1):133-137
  70. Lipson JEG, Milner ST (2010) Local and average glass transitions in polymer thin films. Macromolecules 43
  71. Liu AYH, Rottler J (2009) Physical aging and structural relaxation in polymer nanocompos- ites. J Polym Sci Pt B-Polym Phys 47(18):1789-1798
  72. Liu Y, Russell T, Samant M, Stohr J, Brown H, Cossy-Favre A, Diaz J (1997) Surface relax- ations in polymers. Macromolecules 30(25):7768-7771
  73. Lodge T, McLeish T (2000) Self-concentrations and effective glass transition temperatures in polymer blends. Macromolecules 33(14):5278-5284
  74. Long D, Lequeux F (2001) Heterogeneous dynamics at the glass transition in van der waals liquids, in the bulk and in thin films. Eur Phys J E 4(3):371-387
  75. Lu H, Nutt S (2003) Restricted relaxation in polymer nanocomposites near the glass transition. Macromolecules 36(11):4010-4016
  76. Lubchenko V, Wolynes PG (2007) Theory of structural glasses and supercooled liquids. Annu Rev Phys Chem 58:235-266
  77. Lupascu V, Huth H, Schick C, Wubbenhorst M (2005) Specific heat and dielectric relaxations in ultra-thin polystyrene layers. Thermochim Acta 432(2):222-228
  78. Lupascu V, Picken SJ, Wubbenhorst M (2006) Cooperative and non-cooperative dynamics in ultra-thin films of polystyrene studied by dielectric spectroscopy and capacitive dilatometry. J Non-Cryst Solids 352(52-54):5594-5600
  79. Mapesa EU, Tress M, Schulz G, Huth H, Schick C, Reiche M, Kremer F (2013) Segmental and chain dynamics in nanometric layers of poly(cis-1,4-isoprene) as studied by broadband dielectric spectroscopy and temperature-modulated calorimetry. Soft Matter 9(44):10592-
  80. DE, Soccio M, Sanz A, Garcia C, Ezquerra TA, Nogales A (2013) Chain arrangement and glass transition temperature variations in polymer nanoparticles under 3d- confinement. Macromolecules 46(11):4698-4705
  81. McCaig MS, Paul DR (2000) Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging part i. experimental observations. Polymer 41(2):629-637
  82. McCaig MS, Paul DR, Barlow JW (2000) Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging part i. experimental observations. Polymer 41(2):639-648
  83. Ming W, Zhao J, Lu X, Wang C, Fu S (1996) Novel characteristics of polystyrene microspheres prepared by microemulsion polymerization. Macromolecules 29(24):7678-7682
  84. Miyazaki T, Inoue R, Nishida K, Kanaya T (2007) X-ray reflectivity studies on glass transition of free standing polystyrene thin films. Eur Phys J Spec Top 141:203-206
  85. Murphy TM, Langhe DS, Ponting M, Baer E, Freeman BD, Paul DR (2011) Physical aging of layered glassy polymer films via gas permeability tracking. Polymer 52(26):6117-6125
  86. Napolitano S, Cangialosi D (2013) Interfacial free volume and vitrification: reduction in T g in proximity of an adsorbing interface explained by the free volume holes diffusion model. Macromolecules 46(19):8051-8053
  87. Napolitano S, Rotella C, Wübbenhorst M (2012) Can thickness and interfacial interactions univocally determine the behavior of polymers confined at the nanoscale? ACS Macro Lett 1(10):1189-1193
  88. Napolitano S, Rotella C, Wuebbenhorst M (2011) Is the reduction in tracer diffusivity under nanoscopic confinement related to a frustrated segmental mobility? Macromol Rapid Commun 32(11):844-848
  89. Napolitano S, Wübbenhorst M (2011) The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat Commun 2:260
  90. Napolitano S, Wuebbenhorst M (2010) Structural relaxation and dynamic fragility of freely standing polymer films. Polymer 51(23):5309-5312
  91. Nyquist H (1928) Thermal agitation of electric charge in conductors. Phys Rev 32(1):110-113
  92. O'Connell P, McKenna G (2005) Rheological measurements of the thermoviscoelastic response of ultrathin polymer films. Science 307(5716):1760-1763
  93. Paeng K, Swallen SF, Ediger MD (2011) Direct measurement of molecular motion in free- standing polystyrene thin films. J Am Chem Soc 133(22):8444-8447
  94. Perlich J, Koerstgens V, Metwalli E, Schulz L, Georgii R, Mueller-Buschbaum P (2009) Solvent content in thin spin-coated polystyrene homopolymer films. Macromolecules 42(1): 337-344
  95. Pfromm PH, Koros WJ (1995) Accelerated physical aging of thin glassy polymer-films- evidence from gas-transport measurements. Polymer 36(12):2379-2387
  96. Priestley RD (2009) Physical aging of confined glasses. Soft Matter 5(5):919-926
  97. Priestley RD, Broadbelt LJ, Torkelson JM (2005) Physical aging of ultrathin polymer films above and below the bulk glass transition temperature: effects of attractive vs neutral polymer- substrate interactions measured by fluorescence. Macromolecules 38(3):654-657
  98. Priestley RD, Broadbelt LJ, Torkelson JM, Fukao K (2007) Glass transition and alpha- relaxation dynamics of thin films of labeled polystyrene. Phys Rev E 75(6, 1):061806
  99. Priestley RD, Ellison CJ, Broadbelt LJ, Torkelson JM (2005) Structural relaxation of polymer glasses at surfaces, interfaces and in between. Science 309(5733):456-459
  100. Priestley RD, Rittigstein P, Broadbelt LJ, Fukao K, Torkelson JM (2007) Evidence for the molecular-scale origin of the suppression of physical ageing in confined polymer: fluorescence and dielectric spectroscopy studies of polymer-silica nanocomposites. J Phys Condens Matt 19(20):2996-3005
  101. Pye JE, Rohald KA, Baker EA, Roth CB (2010) Physical aging in ultrathin polystyrene films: evidence of a gradient in dynamics at the free surface and its connection to the glass transition temperature reductions. Macromolecules 43(19):8296-8303
  102. Pye JE, Roth CB (2011) Two simultaneous mechanisms causing transition temperature reductions in high molecular weight freestanding polymer films as measured by transmission ellipsometry. Phys Rev Lett 107(23):235701
  103. Pye JE, Roth CB (2013) Physical aging of polymer films quenched and measured free-standing via ellipsometry: controlling stress imparted by thermal expansion mismatch between film and support. Macromolecules 46(23):9455-9463
  104. Rauscher PM, Pye JE, Baglay RR, Roth CB (2013) Effect of adjacent rubbery layers on the physical aging of glassy polymers. Macromolecules 46:9806-9817
  105. Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM (2007) Model polymer nanocom- posites provide an understanding of confinement effects in real nanocomposites. Nat Mater 6(4):278-282
  106. Rotella C, Wubbenhorst M, Napolitano S (2011) Probing interfacial mobility profiles via the impact of nanoscopic confinement on the strength of the dynamic glass transition. Soft Matter 7(11):5260-5266
  107. Roth C, Dutcher J (2003) Glass transition temperature of freely-standing films of atactic poly(methyl methacrylate). Eur Phys J E 12(1):103-107
  108. Rowe BW, Freeman BD, Paul DR (2009) Physical aging of ultrathin glassy polymer films tracked by gas permeability. Polymer 50(23):5565-5565
  109. Rowe BW, Pas SJ, Hill AJ, Suzuki R, Freeman BD, Paul DR (2009) A variable energy positron annihilation lifetime spectroscopy study of physical aging in thin glassy polymer films. Polymer 50(25):6149-6156
  110. Schmelzer JWP, Gutzow IS, Mazurin OV, Priven AI, Todorova SV, Petrov BP (2011) Glasses and the glass transition. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim
  111. See Y, Cha J, Chang T, Ree M (2000) Glass transition temperature of poly(tert-butyl methacry- late) langmuir-blodgett film and spin-coated film by x-ray reflectivity and ellipsometry. Lang- muir 16(5):2351-2355
  112. Serghei A, Huth H, Schick C, Kremer F (2008) Glassy dynamics in thin polymer layers having a free upper interface. Macromolecules 41(10):3636-3639
  113. Serghei A, Kremer F (2008) Metastable states of glassy dynamics, possibly mimicking confinement-effects in thin polymer films. Macromol Chem Phys 209(8):810-817
  114. Sharp JS, Forrest JA (2003) Free surfaces cause reductions in the glass transition temperature of thin polystyrene films. Phys Rev Lett 91:235701
  115. Soles C, Douglas J, Wu W, Peng H, Gidley D (2004) Comparative specular x-ray reflectivity, positron annihilation lifetime spectroscopy, and incoherent neutron scattering measurements of the dynamics in thin polycarbonate films. Macromolecules 37(8):2890-2800
  116. Svanberg C (2007) Glass transition relaxations in thin suspended polymer films. Macromole- cules 40(2):312-315
  117. Tanaka Y, Yamamoto T (2012) Enthalpy relaxation of comb-like polymer analysed by com- bining activation energy spectrum and tnm models. J Non-Cryst Solids 358(14):1687-1698
  118. Thornton AW, Hill AJ (2010) Vacancy diffusion with time-dependent length scale: an insight- ful new model for physical aging in polymers. Ind Eng Chem Res 49(23):12119-12124
  119. Thornton AW, Nairn KM, Hill AJ, Hill JM, Huang Y (2009) New relation between diffusion and free volume: ii. predicting vacancy diffusion. J Membr Sci 338(1-2):38-42
  120. Thurau CT, Ediger MD (2003) Change in the temperature dependence of segmental dynamics in deeply supercooled polycarbonate. J Chem Phys 118(4):1996-2004
  121. Tress M, Erber M, Mapesa EU, Huth H, Mueller J, Serghei A, Schick C, Eichhorn KJ, Volt B, Kremer F (2010) Glassy dynamics and glass transition in nanometric thin layers of polystyrene. Macromolecules 43(23):9937-9944
  122. Tress M, Mapesa EU, Kossack W, Kipnusu WK, Reiche M, Kremer F (2013) Glassy dynamics in condensed isolated polymer chains. Science 341(6152):1371-1374
  123. Tsui O, Russell T, Hawker C (2001) Effect of interfacial interactions on the glass transition of polymer thin films. Macromolecules 34(16):5535-5539
  124. Wallace W, Vanzanten J, Wu W (1995) Influence of an impenetrable interface on a polymer glass-transition temperature. Phys Rev E 52(4, A):R3329-R3332
  125. L, Velikov V, Angell C (2002) Direct determination of kinetic fragility indices of glass- forming liquids by differential scanning calorimetry: kinetic versus thermodynamic fragilities. J Chem Phys 117(22):10184-1019
  126. Wang X, Zhou W (2002) Glass transition of microtome-sliced thin films. Macromolecules 35(18):6747-6750
  127. White RP, Lipson JEG (2011) Thermodynamic treatment of polymer thin-film glasses. Phs Rev E 84(4, 1):041801
  128. Yin H, Cangialosi D, Schoenhals A (2013) Glass transition and segmental dynamics in thin supported polystyrene films: the role of molecular weight and annealing. Thermochim Acta 566:186-192
  129. Yin H, Napolitano S, Schoenhals A (2012) Molecular mobility and glass transition of thin films of poly(bisphenol a carbonate). Macromolecules 45(3):1652-1652
  130. Yin H, Schoenhals A (2013) Calorimetric glass transition of ultrathin poly(vinyl methyl ether) films. Polymer 54(8, SI):2067-2070
  131. Zhang C, Boucher VM, Cangialosi D, Priestley RD (2013) Mobility and glass transition temperature of polymer nanospheres. Polymer 54(1):230-235
  132. Zhang C, Guo Y, Priestley RD (2011) Glass transition temperature of polymer nanoparticles under soft and hard confinement. Macromolecules 44(10):4001-4006