Fully automated determination of 74 pharmaceuticals in environmental and waste waters by online solid phase extraction–liquid chromatography-electrospray–tandem mass spectrometry (original) (raw)
Related papers
2020
A simple on-line method was developed for the analysis of pharmaceuticals, pesticides and some metabolites in drinking, surface and wastewater samples. The technique is based on the use of on-line solid-phase extraction combined with liquid chromatography electrospray tandem mass spectrometry with positive electrospray ionization (LC-ESI(PI)-MS/MS). The injection of only 1 mL of filtered water sample is used with a total analysis time of 20 min, including the period required to flush the SPE cartridge with organic solvent and reconditioning the LC column. Method detection limits were in the range of 2 to 24 ng L À1 for the compounds of interest, with recoveries from 87 to 110% in surface as well as wastewater samples. Matrix effects were observed for some compounds without exceeding more than 25%. All results displayed a good degree of reproducibility, with relative standard deviations (RSD) of less than 12% for all compounds. Moreover, at least 200 samples were analyzed without alt...
Analytical and bioanalytical chemistry, 2015
A fast and sensitive multianalyte/multiclass high-performance reversed-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the simultaneous analysis of 89 pharmaceuticals in influent and effluent wastewater samples. The method developed consists of solid-phase extraction (SPE) using a hydrophilic-lipophilic-balanced polymer followed by LC-MS/MS with electrospray ionization in both positive mode and negative mode. The selected pharmaceuticals belong to different classes-analgesic/anti-inflammatory drugs, antibiotics, antiepileptics, β-adrenoceptor-blocking drugs, lipid-regulating agents, statins, and many others. The influence of the mobile phase composition on the sensitivity of the method, and the optimum conditions for SPE in terms of analyte recovery were extensively studied. Chromatographic separation was performed on an Atlantis T3 (100 mm × 2.1 mm, 3-μm) column with a gradient elution using methanol-0.01 % v/v formic acid as t...
Journal of Chromatography B, 2021
An on-line solid phase extraction using a lab-made restricted access media (RAM) was developed as sample preparation procedure for determination of the pharmaceutical compounds caffeine (CAF), carbamazepine (CBZ), norfloxacin (NOR), ciprofloxacin (CIP), fluoxetine (FLX) and venlafaxine in wastewater treatment plant samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This method is suitable for use in routine of analysis, avoiding cross-contamination and requiring only a small sample volume (50 µL), with minimal handling. The method was validated according to international guidelines. The chromatographic efficiency was evaluated using peak resolution and asymmetry parameters. Carryover was also evaluated, in order to ensure reliability of the analysis and the ability to reuse the cartridge. Satisfactory linearity (r2 > 0.99) was obtained for all the compounds. The intra- and inter-day precision values were lower than 5.79 and 14.1%, respectively. The limits of detection ranged from 0.01 to 3 µg L-1 and the limits of quantification were from 0.1 to 5 µg L-1. The method was applied to 20 environmental wastewater samples, with caffeine being the most widely detected compound, at the highest concentration of 392 µg L-1, while other compounds were detected in fewer samples at lower concentrations (up to 9.60 µg L-1). The lab-made modification is a cheaper option for on-line sample preparation, compared to commercially available on-line SPE cartridges and RAM columns. Moreover, a high-throughput procedure was achieved, with an analysis time of 16 min including sample preparation and chromatographic separation. The same RAM column was applied over 200 injections including method optimization, validation and application in wastewater samples without loss of analytical response.