Status Report on the Series Production of the Main Superconducting Dipole Magnets for LHC (original) (raw)
Related papers
Status Report on the Superconducting Dipole Magnet Production for the LHC
IEEE Transactions on Applied Superconductivity, 2000
In August 2006, about 95 % of the production of the 1232 LHC superconducting dipole cold masses, whose coils are wound with Cu/Nb-Ti cables, is completed. One of the 3 manufacturers, having produced one third of the required magnets, completed its production in the end of 2005. The acceptance of the magnets takes place after the 1.9 K performance tests and has been issued for more then 1000 magnets so far. More then half of the dipole magnets are already installed in the tunnel. The paper reviews the main features of the dipoles, the most important steps of the manufacturing and the most critical operations. The quality control and the critical nonconformities that have led, for instance, to a swift campaign of investigations and repairs of few subcomponents (diode assembly, cold bore tube to welding flare fillet weld) are discussed. The status of the production and the performance of the tested dipoles will be presented. Finally the expected schedule for the completion of the production will be shown.
A number of twin aperture, 10 m long, model dipole magnets for the LHC Project have been built and tested. With regard to the models of the first generation, the inner coil diameter and the intra-beam distance were increased from 50 to 56 mm and from 180 to about 194 mm, respectively. Also with regard to the previous models, a 5-block coil cross-section was chosen and the width of the Rutherford cable was reduced from 17 mm to 15 mm. The coils were manufactured and collared in Industry, the assembly of their magnetic circuit and cold mass were carried out at CERN. The individual design and manufacturing features of each of these magnets are described and the results of warm and cold magnetic measurement are presented and discussed.
Construction of the CERN Fast Cycled Superconducting Dipole Magnet Prototype
IEEE Transactions on Applied Superconductivity, 2000
CERN is pursuing a small scale R&D on a fast cycled superconducting dipole magnet (FCM) of interest for the upgrade plan of the LHC accelerator complex. The FCM dipole prototype being built has a number of novel features if compared to other magnets for similar applications. In this paper we describe the magnet design, and its expected performance, focusing especially on the novel features (magnetic circuit, mechanical supports, cooling) and on the details of the manufacturing procedure (coil winding and impregnation, joints, instrumentation and quench protection).
IEEE Transactions on Appiled Superconductivity, 2000
Absfmct -This paper reports about the program of six LHC superconducting main dipole final prototypes and the steps towards series manufncture. The above program, launchcd in summer 1998, relies on collared coils mnnufaclured by industry and cold masses nssemhlcd ut the CERN Magnet Assembly Facility. Following design, stnbility and robustness studies, thc mngnet dcsign for series manufncture features a "6-block" coil and austenitic stcel collars. A general description of the magnct with its main componenfs is given and thc mnin working parameters and the most importnnt manufacturing features are prcsented. Results of mechanical and magnetic measurements arc given as well as the performnncev of the first prototype. A comparison with results from the previous gencrntion of dipole magnet models and prototypcs is also made. Finally nn outlook towards series manufacture i s givcn.
Status of the Production of the LHC Superconducting Corrector Magnets
IEEE Transactions on Appiled Superconductivity, 2004
The Large Hadron Collider (LHC) will be equipped with a large number (6400) of superconducting corrector magnets. These magnets are powerful, with typical peak fields of 3-4 T on the coils, but at the same time compact and of low cost. There are many types: sextupoles, octupoles and decapoles to correct the main dipole field, dipoles, quadrupoles, sextupoles and octupoles to condition the proton beams and several nested correctors from dipole to dodecapole in the inner triplets. The sizes vary from 6 kg, 110 mm long, nested decapole-octupole spool pieces to 1800 kg, 1.4m long, trim quadrupoles. The fabrication of the 11 different types of magnets is assured by 10 contracts placed at 6 firms, two of which are in India. A number of magnets are now in series production, others in their pre-series production. The paper describes the present state of the fabrication and the testing of these magnets.
Status Report on the LHC Main Magnet Production
IEEE Transactions on Appiled Superconductivity, 2005
The LHC ring will contain 1232 main dipole and 382 main quadrupole double aperture magnets. All main magnets are superconducting and employ Nb-Ti/Cu Rutherford type cables operated at 1.9 K. The dipole production has reached the equivalent of almost three octants of cold masses and nearly four octants of collared coils. The quadrupole production has reached 75 cold masses and over 150 bare magnets. The ramping up of large scale magnet production has posed several challenges which will be discussed, like: the coil size uniformity, coil pre-stress control, cold mass welding technique and the geometrical shape issues. The magnetic measurement results at warm will be presented together with their usage for the quality control in the production. The common features and differences of the three dipole producers will be discussed. The latest version of the production schedule will be presented.
Description of the Main Features of the Series Production of the LHC Main Dipole Magnets
IEEE Transactions on Applied Superconductivity, 2000
The series production of the LHC main dipole magnets was completed in November 2006. This paper presents the organization implemented at CERN and the milestones fixed to fullfil the technical requirements and to respect the master schedule of the machine installation. The CERN organization for the production follow-up, the quality assurance and the magnet testing, as well as the organization of the three main contractors will be described. A description of the design work and procurement of most of the specific heavy tooling and key components will be given with emphasis on the advantages and drawbacks.
Performance of the LHC final prototype and first pre-series superconducting dipole magnets
IEEE Transactions on Appiled Superconductivity, 2002
Within the LHC cryo-dipole program, six full-scale superconducting prototypes of final design were built in collaboration between Industry and CERN, followed by launching the manufacture of pre-series magnets. Five prototypes and the first of the pre-series magnets were tested at CERN. This paper reviews the main features and the performance of the cryo-dipoles tested at 4.2 K and 1.8 K. The results of the quench training, conductor performance, magnet protection, sensitivity to ramp rate and field characteristics are presented and discussed in terms of the design parameters.
Superconducting magnets for the LHC main lattice
IEEE Transactions on Applied Superconductivity, 2004
The main lattice of the Large Hadron Collider (LHC) will employ about 1600 main magnets and more than 4000 corrector magnets. All superconducting and working in pressurized superfluid helium bath, these impressive line of magnets will fill more than 20 km of the underground tunnel. With almost 70 main dipoles already delivered and 10 main quadrupoles almost completed, we passed the 5% of the production and now all manufacturers have fully entered into series production. In this paper the most critical issues encountered in the ramping up in such a real large scale fabrication will be addressed: uniformity of the coil size and of prestress, special welding technique, tolerances on curvature (dipoles) or straightness (quadrupoles) and of the cold mass extremities, harmonic content and, most important, the integrated field uniformity among magnets. The actual limits and the solution for improvements will be discussed. Finally a realistic schedule based on actual achievements is presented.
Performance of the first LHC pre-series superconducting dipoles
IEEE Transactions on Appiled Superconductivity, 2003
Within the LHC magnet program, a preseries production of final design, full-scale superconducting dipoles has presently started in industry and magnets are being tested at CERN. The main features of these magnets are: two-in-one structure, 56 mm aperture, six-block two layer coils wound from 15.1 mm wide graded NbTi cables, and all-polyimide insulation. This paper reviews the main test results of magnets tested to date in both supercritical and superfluid helium. The results of the quench training, conductor performance, magnet protection, sensitivity to ramp rate, and magnetic field quality are presented and discussed in terms of the design parameters and the aims of the LHC magnet program. LHC Division Abstract 12 December 2002