Head Direction Cell Instability in the Anterior Dorsal Thalamus after Lesions of the Interpeduncular Nucleus (original) (raw)

Recordings of postsubiculum head direction cells following lesions of the laterodorsal thalamic nucleus

Brain Research, 1998

Areas of the rodent limbic system are important for solving spatial tasks and accurate navigation. Previous studies have identified cells Ž . Ž . in the postsubiculum PoS and the lateral dorsal thalamus LDN which discharge as a function of the animal's head direction in the horizontal plane. These two brain areas are reciprocally connected with one another. To determine the contribution of the LDN to the functioning of PoS head direction cells, we lesioned the LDN and recorded single units in the PoS. We report here that lesions of the LDN had little effect upon the firing properties of PoS HD cells. In addition, HD cells from lesioned animals showed normal responses to Ž . two environmental manipulations: 1 when the salient visual cue was rotated the preferred firing directions of PoS HD cells shifted a Ž . similar amount and 2 cells frequently ceased firing, or had reductions in their peak firing rate, when the animal was restrained and passively rotated through the preferred firing direction. These results indicate that the LDN does not play a substantive role in either the generation or the stability of the HD cell signal in the PoS. q 1998 Elsevier Science B.V.

Head direction cells recorded in the anterior thalamic nuclei of freely moving rats

The Journal of neuroscience : the official journal of the Society for Neuroscience, 1995

Previous studies have identified neurons in the postsubiculum which discharge as a function of the animal's head direction in the horizontal plane, independent of its behavior and location in the environment. Anatomical studies have shown that the postsubiculum contains reciprocal connections with the anterior thalamic nuclei (ATN). In order to determine how the head direction (HD) cell signal is processed in the brain, single-unit recordings were monitored in the ATN of freely moving rats in order to characterize their behavioral and spatial correlates. Animals were trained to retrieve food pellets thrown randomly into a cylindrical apparatus containing a single orientation cue. Single unit recordings in the ATN showed that approximately 60% of the recorded cells discharged in relation to the animal's head direction in the horizontal plane. Observation of the animal and quantitative analyses showed that HD cell firing was not dependent on the animal's behavior, trunk po...

Intact landmark control and angular path integration by head direction cells in the anterodorsal thalamus after lesions of the medial entorhinal cortex

Hippocampus, 2011

The medial entorhinal cortex (MEC) occupies a central position within neural circuits devoted to the representation of spatial location and orientation. The MEC contains cells that fire as a function of the animal's head direction (HD), as well as grid cells that fire in multiple locations in an environment, forming a repeating hexagonal pattern. The MEC receives inputs from widespread areas of the cortical mantle including the ventral visual stream, which processes object recognition information, as well as information about visual landmarks. The role of the MEC in processing the HD signal or landmark information is unclear. We addressed this issue by neurotoxically damaging the MEC and recording HD cells within the anterodorsal thalamus (ADN). Direction-specific activity was present in the ADN of all animals with MEC lesions. Moreover, the discharge characteristics of ADN HD cells were only mildly affected by MEC lesions, with HD cells exhibiting greater anticipation of future HDs. Tests of landmark control revealed that HD cells in lesioned rats were capable of accurately updating their preferred firing directions in relation to a salient visual cue. Furthermore, cells from lesioned animals maintained stable preferred firing directions when locomoting in darkness and demonstrated stable HD cell tuning when locomoting into a novel enclosure, suggesting that MEC lesions did not disrupt the integration of idiothetic cues, or angular path integration, by HD cells. Collectively, these findings suggest that the MEC plays a limited role in the formation and spatial updating of the HD cell signal. V V C 2010 Wiley-Liss, Inc.

Interaction between the postsubiculum and anterior thalamus in the generation of head direction cell activity

The Journal of neuroscience : the official journal of the Society for Neuroscience, 1997

Previous research has identified neurons in the postsubiculum (PoS) and anterior dorsal thalamic nucleus (AD) of the rat that discharge as a function of the animal's head direction. In addition, anatomical studies have shown that the AD and PoS are reciprocally connected with one another. The current study examined whether head direction (HD) cells in each of the two areas is dependent on input from the other structure. After both electrolytic or neurotoxic lesions of the AD, no cells were identified with direction-specific discharge in the PoS. In contrast, AD HD cell activity was still present after neurotoxic lesions to the PoS. However, AD HD cells in PoS-lesioned rats exhibited three important differences compared with AD HD cells in intact animals: (1) their directional firing range was significantly larger, (2) their firing predicted the animal's future head direction by a larger amount, and (3) their preferred firing direction was substantially less influenced by a p...

Passive Movements of the Head Do Not Abolish Anticipatory Firing Properties of Head Direction Cells

Journal of Neurophysiology, 2004

Neurons in the anterior dorsal thalamic nucleus (ADN) of the rat selectively discharge in relation to the animal's head direction (HD) in the horizontal plane. Temporal analyses of cell firing properties reveal that their discharge is optimally correlated with the animal's future directional heading by ϳ24 ms. Among the hypotheses proposed to explain this property is that ADN HD cells are informed of future head movement via motor efference copy signals. One prediction of this hypothesis is that when the rat's head is moved passively, the anticipatory time interval (ATI) will be attenuated because the motor efference signal reflects only the active contribution to the movement. The present study tested this hypothesis by loosely restraining the animal and passively rotating it through the cell's preferred direction. Contrary to our prediction, we found that ATI values did not decrease during passive movement but in fact increased significantly. HD cells in the postsubiculum did not show the same effect, suggesting independence between the two sites with respect to anticipatory firing. We conclude that it is unlikely that a motor efference copy signal alone is responsible for generating anticipatory firing in ADN HD cells.

Firing properties of head direction cells in the rat anterior thalamic nucleus: dependence on vestibular input

The Journal of neuroscience : the official journal of the Society for Neuroscience, 1997

Vestibular information influences spatial orientation and navigation in laboratory animals and humans. Neurons within the rat anterior thalamus encode the directional heading of the animal in absolute space. These neurons, referred to as head direction (HD) cells, fire selectively when the rat points its head in a specific direction in the horizontal plane with respect to the external laboratory reference frame. HD cells are thought to represent an essential component of a neural network that processes allocentric spatial information. The functional properties of HD cells may be dependent on vestibular input. Here, anterior thalamic HD cells were recorded before and after sodium arsanilate-induced vestibular system lesion. Vestibular lesions abolished the directional firing properties of HD cells. The time course of disruption in the directional firing properties paralleled the loss of vestibular function. Arsanilate-treated rats exhibited only minor changes in locomotor behavior, w...

Path Integration and Lesions Within the Head Direction Cell Circuit: Comparison Between the Roles of the Anterodorsal Thalamus and Dorsal Tegmental Nucleus

Behavioral Neuroscience, 2006

Experiments were designed to determine whether 2 regions of the head direction cell circuit, the anterodorsal thalamic nucleus (ADN) and the dorsal tegmental nucleus (DTN), contribute to navigation. Rats were trained to perform a food-carrying task with and without blindfolds prior to receiving sham lesions or bilateral lesions of the ADN or DTN. ADN-lesioned rats were mildly impaired in both versions of the task. DTN-lesioned rats, however, were severely impaired and showed reduced heading accuracy in both task versions. These findings suggest that although both the DTN and ADN contribute to navigation based on path integration and landmarks, disruption of the head direction cell circuit at the level of the DTN has a significantly greater effect on spatial behavior than lesions of the ADN.

Comparisons of head direction cell activity in the postsubiculum and anterior thalamus of freely moving rats

Hippocampus, 1998

Single cells in the rat anterior thalamic nucleus (ATN) and postsubiculum (PoS) discharge as a function of the rat's directional heading in the horizontal plane, independent of its location. A previous study that compared cell firing during clockwise and counterclockwise head turns concluded that ATN 'head direction' (HD) cell discharge anticipates the rat's future directional heading, while PoS HD cell discharge is in register with the rat's current directional heading (Blair and Sharp [1995] J Neurosci 15:6260-6270). In the current study we extend these findings by using a different method of analysis. HD cells in the ATN and PoS were first characterized by three different measures: peak firing rate, range width, and information content. We then examined how these measures varied when cell firing was aligned with past (negative time shift) or future (positive time shift) head direction of the rat. We report that all three measures were optimized when ATN cell firing was aligned with the animal's future directional heading by about ؉23 msec. In contrast, PoS HD cell firing was optimized when cell firing was aligned with the rat's past head direction by about -7 msec. When the optimal value was plotted as a function of the amount of time spikes were shifted relative to head orientation, the mean ATN function was shifted to the right of the PoS function only at negative time shifts; at positive time shifts the two functions overlapped. Analysis of two recording sessions from the same cell indicated that each cell in a particular brain area is 'tuned' to a specific time shift so that all cells within a brain area are not uniformly tuned to the same time shift. Other analyses showed that the clockwise and counterclockwise tuning functions were not skewed in the direction of the head turn as postulated by Redish et al. ([1996] Network: Computation in Neural Systems 7:671-685) and Blair et al. ([1997] J Neurophysiol 17:145-159). Additional analysis on episodes when the rat happened to continually point its head in the preferred direction indicated that HD cell firing undergoes little adaptation. In the Discussion, we argue that these results are best accounted for by a motor efference copy signal operating on both types of HD cells such that the copy associated with the PoS HD cells is delayed in time by about 30 msec relative to the copy associated with ATN HD cells.

Head direction cell activity in the anterodorsal thalamus requires intact supragenual nuclei

Journal of Neurophysiology, 2012

Neural activity in several limbic areas varies as a function of the animal's head direction (HD) in the horizontal plane. Lesions of the vestibular periphery abolish this HD cell signal, suggesting an essential role for vestibular afference in HD signal generation. The organization of brain stem pathways conveying vestibular information to the HD circuit is poorly understood; however, recent anatomical work has identified the supragenual nucleus (SGN) as a putative relay. To test this hypothesis, we made lesions of the SGN in rats and screened for HD cells in the anterodorsal thalamus. In animals with complete bilateral lesions, the overall number of HD cells was significantly reduced relative to control animals. In animals with unilateral lesions of the SGN, directional activity was present, but the preferred firing directions of these cells were unstable and less influenced by the rotation of an environmental landmark. In addition, we found that preferred directions displayed large directional shifts when animals foraged for food in a darkened environment and when they were navigating from a familiar environment to a novel one, suggesting that the SGN plays a critical role in projecting essential self-motion (idiothetic) information to the HD cell circuit.

Impaired head direction cell representation in the anterodorsal thalamus after lesions of the retrosplenial cortex

The Journal of neuroscience : the official journal of the Society for Neuroscience, 2010

The retrosplenial cortex (RSP), a brain region frequently linked to processes of spatial navigation, contains neurons that discharge as a function of a rat's head direction (HD). HD cells have been identified throughout the limbic system including the anterodorsal thalamus (ADN) and postsubiculum (PoS), both of which are reciprocally connected to the RSP. The functional relationship between HD cells in the RSP and those found in other limbic regions is presently unknown, but given the intimate connectivity between the RSP and regions such as the ADN and PoS, and the reported loss of spatial orientation in rodents and humans with RSP damage, it is likely that the RSP plays an important role in processing the limbic HD signal. To test this hypothesis, we produced neurotoxic or electrolytic lesions of the RSP and recorded HD cells in the ADN of female Long-Evans rats. HD cells remained present in the ADN after RSP lesions, but the stability of their preferred firing directions was ...