Archaeomagnetism: An error assessment of fired material observations in the British directional database. (original) (raw)

Advances in archaeomagnetic dating in Britain: New data, new approaches and a new calibration curve

Journal of Archaeological Science

Archaeomagnetic dating offers a valuable chronological tool for archaeological investigations, particularly for dating fired material. The method depends on the establishment of a dated record of secular variation of the Earth's magnetic field and this paper presents new and updated archaeomagnetic directional data from the UK and geomagnetic secular variation curves arising from them. The data are taken from publications from the 1950's to the present day; 422 dated entries derived from existing archaeo and geomagnetic databases are re-evaluated and 487 new directions added, resulting in 909 entries with corresponding dates, the largest collection of dated archaeomagnetic directions from a single country. An approach to improving the largest source of uncertainty, the independent dating, is proposed and applied to the British Iron Age, resulting in 145 directions from currently available databases being updated with revised ages and/or uncertainties, and a large scale reassessment of age assignments prior to inclusion into the Magnetic Moments of the Past and GEOMAGIA50 databases. From the significantly improved dataset a new archaeomagnetic dating curve for the UK is derived through the development of a temporally continuous geomagnetic field model, and is compared with previous UK archaeomagnetic dating curves and global field models. The new model, ARCH-UK.1 allows model predictions for any location in the UK with associated uncertainties. It is shown to improve precision and accuracy in archaeomagnetic dating, and to provide new insight into past geomagnetic field changes.

Archaeomagnetic secular variation in the UK during the past 4000 years and its application to archaeomagnetic dating

Physics of the Earth and Planetary Interiors, 2007

This paper examines the limitations and deficiencies of the current British archaeomagnetic calibration curve and applies several mathematical approaches in an attempt to produce an improved secular variation curve for the UK for use in archaeomagnetic dating. The dataset compiled is the most complete available in the UK, incorporating published results, PhD theses and unpublished laboratory reports. It comprises 620 archaeomagnetic (directional) data and 238 direct observations of the geomagnetic field, and includes all relevant information available about the site, the archaeomagnetic direction and the archaeological age. A thorough examination of the data was performed to assess their quality and reliability. Various techniques were employed in order to use the data to construct a secular variation (SV) record: moving window with averaging and median, as well as Bayesian statistical modelling. The SV reference curve obtained for the past 4000 years is very similar to that from France, most differences occurring during the early medieval period (or Dark Ages). Two examples of dating of archaeological structures, medieval and pre-Roman, are presented based on the new SV curve for the UK and the implications for archaeomagnetic dating are discussed.

Archeomagnetic intensity investigations of French medieval ceramic workshops: Contribution to regional field modeling and archeointensity-based dating

Physics of the Earth and Planetary Interiors, 2021

HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives| 4.0 International License

Validity of archaeomagnetic field recording: an experimental pottery kiln at Coppengrave, Germany

Geophysical Journal International, 2016

Palaeomagnetic data obtained from archaeological materials are used for reconstructions of the Earth's magnetic field of the past millennia. While many studies tested the reliability of this recorder for palaeointensity only a few studies did this for direction. The study presents an archaeomagnetic and rock magnetic investigation applied to an experimental pottery kiln, which was operated in 2003 to produce stone ware. This kind of high-quality pottery needs a temperature of at least 1160 • C. Shortly before heating of the kiln direct absolute measurements of the absolute geomagnetic field vector have been carried out close to it. After cooling of the kiln 24 oriented palaeomagnetic samples have been taken. Although Curie temperatures are about 580 • C, that is the typical temperature for magnetite, thermal as well as alternating field demagnetisations reveal also a considerable amount of hematite as magnetic carrier. This mixture of magnetite and hematite is dominated by pseudo-single domain grains. Demagnetisation removed in some cases weak secondary components, but in most cases the specimens carried a single component thermoremanent magnetisation. The mean characteristic remanent magnetisation direction agrees on 95 per cent confidence level with the directly measured field direction. Archaeointensity was obtained from five specimens with the Thellier-Coe method and with the multiple-specimen palaeointensity domain-state corrected method. Six of these specimens also provided a result of the Dekkers-Böhnel method, which overestimated the archaeointensity by about 9 per cent compared to the direct value, while after correction for fraction the value agrees very well. For the multiple-specimen palaeointensity domain-state corrected method only fractions between 25 and 75 per cent have been used and specimens showing alteration have been excluded. Above 450 • C many specimens showed alteration of the magnetic grains. Because median destructive temperatures were often above this value in most cases the fraction was less than 50 per cent. Nevertheless the obtained intensity (48.48 ± 0.24 µ) is on 95 per cent confidence level in agreement with the direct observation. Behaviour of the specimens during the Thellier-experiments was not ideal because of narrow unblocking temperature spectra and alteration. Nevertheless, the obtained mean archaeointensity is also in agreement with the direct field observation. Here the relative palaeointensity error is about 6 per cent and very high compared the multiple-specimen palaeointensity domain-state corrected method. The investigation demonstrates that a pottery kiln can provide a very precise estimate of the ancient geomagnetic field vector.

Archaeomagnetic dating of a High Middle Age likely iron working site in Corroy-le-Grand (Belgium)

Physics and Chemistry of The Earth, 2008

Archaeological burnt materials and structures provide unique records of direction and intensity of the Earth’s magnetic field in the past, elements that can be absolutely determined applying the archaeomagnetic method. At present, such records within Europe are irregular in both space and time. Presented here is the archaeomagnetic investigation of three kilns that were discovered during a preventive excavation of an archaeological site considered of High Middle Age in Corroy-le-Grand (Belgium) and that are assumed to be related to iron working activities. Archaeological context dating points to kiln operation between the second half of the 10th century until the 12th century AD. As the site is not far from Paris, declination and inclination of the characteristic remanent magnetisation of the kilns were compared with the standard directional secular variation curve for France in order to propose archaeomagnetic dates for the cessation of kiln operation by using probability densities [Lanos, Ph., 2004. Bayesian inference of calibration curves, application to archaeomagnetism. In: Buck, C.E., Millard, A.R. (Eds.), Tools for Constructing Chronologies: Crossing Disciplinary Boundaries. Lecture Notes in Statistics. Springer Verlag, London, pp. 43–82; Lanos, Ph., Le Goff, M., Kovacheva, M., Schnepp, E., 2005. Hierarchical modelling of archaeomagnetic data and curve estimation by moving average technique. Geophysical Journal International 160 (2), 440–476]. This confirms the presumed archaeological age and resulted in more precise time constraints for the last kiln operation. Rock magnetic techniques, proposed by Spassov and Hus [Spassov, S., Hus, J., 2006. Estimating baking temperatures in a Roman pottery kiln by rock magnetic properties: implications of thermochemical alteration for archaeointensity determinations. Geophysical Journal International 167, 592–604], were applied to examine the suitability of the burnt materials from the kilns for archaeointensity determinations and to increase the success rate of the Thellier–Thellier double heating technique. An average value for the field intensity of 69.4 ± 2.5 μT was estimated from 10 specimens from a single kiln, which corresponds reasonably well with published data for Western Europe.

Carrancho, Á., J. J. Villalaín, D.E. Angelucci, M. J. Dekkers, J. Vallverdú. (2009). Rock-magnetic analyses as a tool to investigate archaeological fired. Geophysical Journal International 179, 79-96

Here we report a detailed mineral magnetic study of Neolithic burnt levels in the Mirador Cave (Sierra de Atapuerca, Burgos, Spain) to reconstruct the burning history and to investigate their suitability for archaeomagnetic purposes. As a consequence of the ancient burning, a characteristic facies sequence was developed along the Holocene stratigraphy. From top to bottom it includes: (i) 2–10 cm ash layers, (ii) ∼2 cm underlying rubefied layers and (iii) clay, mainly unburnt and of variable thickness. In some cases a thermally altered facies (2–6 cm) with a heterogeneous texture was identified (facies TF), usually between rubefactions and the unburnt levels. 126 oriented samples from 4 units (MIR12, 15, 18 and 21) and a 2 m section, all comprised between units MIR21 (6380 ± 40 14C BP) and MIR9 (5090 ± 40 14C BP) were analysed with rock magnetic methods. In addition, bulk sediment from each facies that comprise the Neolithic sequence was investigated. Measurements included: stepwise alternating field and thermal demagnetization of natural remanent magnetization (NRM), viscosity experiments, determination of the anisotropy of the magnetic susceptibility (AMS), the susceptibility frequency dependence at room temperature and determination of the temperature dependence of the susceptibility. Additional experiments consisted in the determination of the behaviour of anhysteretic and isothermal (IRM) remanences, magnetic hysteresis loops, first-order-reversal-curve diagrams, and thermal demagnetization of threeaxial IRM. It appeared that the facies all show a fairly similar magnetic mineralogy and grain size dominated by low-titanium magnetite that is often partially maghaemitized. Main differences constitute the amount of superparamagnetic particles that is higher in unburnt strata concurring with a less well-defined NRM behaviour. The magnetic mineral concentration is notably higher in ashes. This homogeneity strongly suggests that similar sources and burial conditions prevailed during Neolithic times. Agreeing with archaeological observations and favoured by rapid burial conditions, very limited alterations have been deduced. AMS data revealed the absence of fluid flow in the ash lenses sampled. Demagnetization revealed a stable single NRM component in ashes, a single or two-component NRM in rubefactions and less stable multicomponent behaviour in clays. In ashes, magnetic minerals are likely secondary in origin formed by low-temperature oxidization soon after burning. Although this thermochemical nature of the NRM invalidates the use of these sediments for palaeointensity studies, archaeomagnetic (directional) data can be successfully obtained because the burning and oxidation are closely confined in time. Key words: Archaeomagnetism; Palaeomagnetic secular variation; Rock and mineral magnetism.

Geomagnetic secular variation as recorded in British lake sediments and its application to archaeomagnetic studies

Physics of the Earth and Planetary Interiors, 2012

Lake sediments can play an important role in understanding and reconstructing temporal characteristics of the geomagnetic field, as they potentially offer near continuous high-resolution archives of magnetic information extending throughout the Holocene. To date lake sediment geomagnetic data has typically been excluded from British archaeomagnetic secular variation curves (SVC) due to uncertainties with the acquisition of magnetisation by lake sediments. This paper presents the argument that, with regards to British datasets, the real problem lies with poor chronological control and sets out to illustrate that with British archaeomagnetic data some progress has been made. The results indicate that it is not currently possible to resolve secular variation on a time scale of $100 years from published British lake sediment data but more success has been made with data from archaeological sediments. This level of detail has been considered necessary for the incorporation of lake sediment data into the British archaeomagnetic dataset, as the ability to resolve short-term geomagnetic changes is critical for the integration of any dataset into the British SVC. As the latter is predominantly employed to date archaeological architecture and artefacts requires that it has the ability to resolve changes over timescales relevant to human lifetimes. Using currently available data this retrospective critique confirms that, in archaeological sediments, depositional and thermoremanent magnetisation can record the same direction over the same time interval.

AN INTRODUCTION TO ARCHAEOMAGNETIC DATING

An introduction to the archaeomagnetic dating technique is given. The technique exploits the secular variation of the geomagnetic field and the ferromagnetic remanence properties of natural material to permit the relative dating of archaeological features. The main features of the method are described, including the acquisition of remanent magnetisation, the determination of archaeodirections and intensities and the construction and application of reference secular variation curves. Data are presented from an archaeological site in Cordoba, Spain. A kiln from an area of ceramic production has been dated using the archaeomagnetic method, giving an age of 1161-1342 AD, consistent with the early medieval activity inferred from archaeological considerations.

Archaeomagnetism in Archaeometry - a Semi-Centennial Review*

Archaeometry, 2008

The journal Archaeometry and its first co-editor Martin Aitken played key roles in the development of archaeomagnetism. This paper briefly reviews all papers published in Archaeometry , and a few others, dealing with archaeomagnetic secular variation, archaeomagnetic dating, archaeointensity studies and related applications of magnetic studies to archaeology, to indicate some of the major developments over the past 50 years.