Modes of Interannual and Interdecadal Variability of Pacific SST (original) (raw)
Related papers
Quasi-quadrennial and quasi-biennial variability in the equatorial Pacific
Climate Dynamics, 1995
Evaluation of competing El Niñ o/Southern Oscillation (ENSO) theories requires one to identify separate spectral peaks in equatorial wind and sea-surface temperature (SST) time series. To sharpen this identification, we examine the seasonal-to-interannual variability of these fields by the data-adaptive method of multi-channel singular spectrum analysis (M-SSA). M-SSA is applied to the equatorial band (47 N-47 S), using 1950-1990 data from the Comprehensive Ocean and Atmosphere Data Set. Two major interannual oscillations are found in the equatorial SST and surface zonal wind fields, U. The main peak is centered at about 52-months; we refer to it as the quasi-quadrennial (QQ) mode. Quasi-biennial (QB) variability is split between two modes, with periods near 28 months and 24 months. A faster, 15-month oscillation has smaller amplitude. The QQ mode dominates the variance and has the most distinct spectral peak. In timelongitude reconstructions of this mode, the SST has the form of a standing oscillation in the eastern equatorial Pacific, while the U-field is dominated by a standing oscillation pattern in the western Pacific and exhibits also slight eastward propagation in the central and western Pacific. The locations of maximum anomalies in both QB modes are similar to those of the QQ mode. Slight westward migration in SST, across the eastern and central, and eastward propagation of U, across the western and central Pacific, are found. The significant wind anomaly covers a smaller region than for the QQ. The QQ and QB modes together represent the ENSO variability well and interfere constructively during major events. The sharper definition of the QQ spectral peak and its dominance are consistent with the "devil's staircase" interaction mechanism between the annual cycle and ENSO.
Journal of Atmospheric and Solar-Terrestrial Physics, 2008
van Coupled air-sea response to solar forcing in the Pacific region during northern winter. ] showed that the Pacific Ocean in northern winter is sensitive to the influence of the sun in its decadal peaks. We extend this study by three solar peaks to a total of 14, examine the response in the stratosphere, and contrast the response to solar forcing to that of cold events (CEs) in the Southern Oscillation. The addition of three solar peak years confirms the earlier results. That is, in solar peak years the sea level pressure (SLP) is, on average, above normal in the Gulf of Alaska and south of the equator, stronger southeast trades blow across the Pacific equator and cause increased upwelling and thus anomalously lower sea surface temperatures (SSTs). Since the effect on the Pacific climate system of solar forcing resembles CEs in the Southern Oscillation, we compare the two and note that, even though their patterns appear similar in some ways, they are particularly different in the stratosphere and are thus due to separate processes. That is, in July-August (JA) of the year leading into January-February (JF) of the solar peak years, the Walker cell expands in the Pacific troposphere, and the stratospheric wind anomalies are westerly below 25 hPa and easterly above, whereas this signal in the stratosphere is absent in CEs. Thus the large-scale east-west tropical atmospheric (Walker) circulation is enhanced, though not to the extent that it is in CEs in the Southern Oscillation, and the solar influence thus appears as a strengthening of the climatological mean regional precipitation maxima in the tropical Pacific. Additionally, CEs have a 1-year evolution, while the response to solar peaks extends across 3 years such that the signal in the Pacific SLP of the solar peaks is similar but weaker in the year leading into the peak and in the year after the peak. The concurrent negative SST anomalies develop during the year before the solar peak, and after the peak the anomalies are still present but are waning. In the stratosphere in solar peaks, the equatorial quasi-biennial oscillation (QBO) is amplified when it is in its westerly phase in the lower stratosphere and easterly phase above; and the QBO is suppressed when in its easterly phase below-westerly phase above. Such an association is not evident in CEs. r
2013
1] The distinct impact of tropical Indian Ocean (IO) and western Pacific (WP) sea surface temperatures (SSTs) after the El Niño winter has been investigated in relation to the summer North Pacific high (NPH) and western North Pacific subtropical high (WNPSH). After the El Niño winter, warming of the IO leads to a summer eastern Pacific (EP) SST anomaly distinct from the cooling of WP; EP cooling occurs in the extreme IO warming case and EP warming in the WP cooling case. Both the warming of the IO and cooling of the WP are responsible for the development of the WNPSH, whereas the summer EP cooling induces an enhanced NPH, especially if it coexists with IO warming. The IO warming triggers an abrupt termination of the El Niño event by causing the easterly anomaly in the WP, which leads to the coexistence of IO warming and EP cooling during the boreal summer. The tropical EP cooling may change the North Pacific SST anomalies via the atmospheric bridge and consequently strengthen the extratropical NPH. The experimental results, which have been obtained from the use of atmospheric general circulation model, support the distinct roles of EP cooling on the NPH and of IO warming and WP cooling on the WNPSH. This finding suggests that the combined effect of IO warming and EP cooling generates a coupled pattern of NPH and WNPSH.
Environmental Research Letters, 2012
A newly released reanalysis dataset covering the period 1979-2009 is analyzed to show that the sea surface temperature (SST) variability in the tropical central Pacific is more closely related to the SST variability in the tropical eastern Pacific before 1990 but more closely related to sea level pressure (SLP) variations associated with the North Pacific Oscillation (NPO) after 1990. Only during the period after 1990 can the NPO excite large SST variability in the tropical central Pacific. Related to this change, El Niño Southern Oscillation (ENSO) SST anomalies tend to spread from the eastern to central tropical Pacific before 1990 in a pattern resembling that associated with the Eastern Pacific (EP) type of ENSO, but are more closely connected to SST variability in the subtropical north Pacific after 1990 with a pattern resembling that of the Central Pacific (CP) type of ENSO. This study concludes that the increased influence of the NPO on the tropical Pacific is a likely reason for the increasing occurrence of the CP type of ENSO since 1990. An analysis of the mean atmospheric circulation during these two periods suggests that the increased NPO influence is associated with a strengthening Hadley circulation after 1990.
The Annular Response to Tropical Pacific SST Forcing
Journal of Climate, 2006
The leading pattern of Northern Hemisphere winter height variability exhibits an annular structure, one related to tropical west Pacific heating. To explore whether this pattern can be excited by tropical Pacific SST variations, an atmospheric general circulation model coupled to a slab mixed layer ocean is employed. Ensemble experiments with an idealized SST anomaly centered at different longitudes on the equator are conducted. The results reveal two different response patterns—a hemispheric pattern projecting on the annular mode and a meridionally arched pattern confined to the Pacific–North American sector, induced by the SST anomaly in the west and the east Pacific, respectively. Extratropical air–sea coupling enhances the annular component of response to the tropical west Pacific SST anomalies. A diagnosis based on linear dynamical models suggests that the two responses are primarily maintained by transient eddy forcing. In both cases, the model transient eddy forcing response ...
Observed mechanisms of El Nino SST evolution in the Pacific
Journal of Marine Research, 2004
Tropical Pacific Ocean SST and velocity observations are used to construct NINO3 and NINO4 area average, 20-year long interannual time series of local and advective convergences of thermal energy. The variability of the sum of these observed convergences in each region is balanced by the vertical convergence of thermal energy due to the latent surface flux (86% in NINO3; 84% in NINO4). The latitude scale of the El Nino SST anomalies is shown to be equal to the ratio of the poleward mean speed of water parcels to the time scale at which thermal energy is given back to the atmosphere by a negative SST feedback through latent heat flux anomaly. Simultaneous observations and analyses of velocity and SST underscore the importance of the time-mean, wind-driven, poleward circulation in the establishment of the patterns of El Nino/SST anomalies directly north and south of the Pacific equator.
Coherent Tropical Indo-Pacific Interannual Climate Variability
Journal of Climate, 2016
A multichannel singular spectrum analysis (MSSA) applied simultaneously to tropical sea surface temperature (SST), zonal wind, and burstiness (zonal wind variability) reveals three significant oscillatory modes. They all show a strong ENSO signal in the eastern Pacific Ocean (PO) but also a substantial SST signal in the western Indian Ocean (IO). A correlation-based analysis shows that the western IO signal contains linearly independent information on ENSO. Of the three Indo-Pacific ENSO modes of the MSSA, one resembles a central Pacific (CP) El Niño, while the others represent eastern Pacific (EP) El Niños, which either start in the central Pacific and grow eastward (EPe) or start near Peru and grow westward (EPw). A composite analysis shows that EPw El Niños are preceded by cooling in the western IO about 15 months earlier. Two mechanisms are discussed by which the western IO might influence ENSO. In the atmospheric bridge mechanism, subsidence over the cool western IO in autumn (...
Journal of Climate, 2009
The roles of intraseasonal Kelvin waves and tropical instability waves (TIWs) in the intraseasonal and low-frequency mixed-layer temperature budget were examined in an isopycnal ocean model forced by QuikSCAT winds from 2000 to 2004. Correlations between temperature tendency and other terms of the intraseasonal budget compare well with previous results using Tropical Atmosphere Ocean (TAO) observations: the net heat flux has the largest correlation in the western Pacific and zonal advection has the largest correlation in the central Pacific. In the central Pacific, the intraseasonal variations in zonal advection were due to both the zonal background velocity acting on the Kelvin wave temperature anomaly and the Kelvin wave’s anomalous velocity acting on the background temperature. In the eastern Pacific, three of the four temperature budget terms have comparable correlations. In particular, the vertical processes acting on the shallow thermocline cause large SST anomalies in phase w...