Enhanced Inhibition of ERK Signaling by a Novel Allosteric MEK Inhibitor, CH5126766, That Suppresses Feedback Reactivation of RAF Activity (original) (raw)

The Therapeutic Promise of Anti-Cancer Drugs Against the Ras/Raf/MEK/ERK Pathway

Topics in Anti-Cancer Research, 2013

The Ras/Raf/MEK/ERK mitogen-activated protein kinase (MAPK) pathway mediates cellular responses to different growth signals and is frequently deregulated in cancer. There are three Raf kinases-A-Raf, B-Raf, and C-Raf; however, only B-Raf is frequently mutated in various cancers. The most common B-Raf mutation involves a substitution of a glutamic acid residue to a valine moiety at codon 600. Subsequently, the MAPK pathway is constitutively activated, even in the absence of any growth signals. Although early attempts to target Ras have not yielded any viable drug candidates, many novel compounds inhibiting the activities of B-Raf and MEK have been developed and investigated in clinical trials in recent years and have shown promising result. The first MEK inhibitor (CI-1040) lacked efficacy in clinical trials, but its low toxicity encouraged the search for novel compounds-now there are over a hundred open clinical trials employing various B-Raf and MEK inhibitors. Several of these trials are now in Phase III. In this chapter, we will discuss new patents and patent applications related to inhibitors of the Ras/Raf/MEK/ERK pathway and some recent clinical trial results.

Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy

Cells

The RAS/RAF/MEK/ERK (MAPK) signaling cascade is essential for cell inter- and intra-cellular communication, which regulates fundamental cell functions such as growth, survival, and differentiation. The MAPK pathway also integrates signals from complex intracellular networks in performing cellular functions. Despite the initial discovery of the core elements of the MAPK pathways nearly four decades ago, additional findings continue to make a thorough understanding of the molecular mechanisms involved in the regulation of this pathway challenging. Considerable effort has been focused on the regulation of RAF, especially after the discovery of drug resistance and paradoxical activation upon inhibitor binding to the kinase. RAF activity is regulated by phosphorylation and conformation-dependent regulation, including auto-inhibition and dimerization. In this review, we summarize the recent major findings in the study of the RAS/RAF/MEK/ERK signaling cascade, particularly with respect to ...

RAS/RAF/MEK Inhibitors in Oncology

Bentham Science

The RAS/RAF/MEK signaling pathway plays a central role in mediating both proliferation and survival of cancer cells. These proteins are a group of serine/threonine kinases activated in response to a variety of extracellular stimuli and mediate signal transduction from the cell surface towards both nuclear and cytosolic targets. In combination with several other signaling pathways, they can differentially alter phosphorylation status of the transcription factors. A controlled regulation of these cascades is involved in cell proliferation and differentiation, whereas an unregulated activation of these kinases can result in oncogenesis. Dysregulation of the RAS/RAF/MEK pathway has been detected in more than 30% of human tumors, however mutations in the MEK1 and MEK2 genes are seldom, so that hyperactivation of MEK1/2 usually results from gain-of-function mutations in RAS and/or B-RAF. In addition, alteration of the pathways is often associated with drug resistance in the clinic, such as the case of K-RAS mutant expressing tumors. Since RAS protein is a difficult target, alternative ways altering post-translational modifications using farnesyl transferase inhibitors have been adopted. Drug discovery programs have therefore largely focused on B-RAF and MEK. In this review we will discuss the most promising strategies developed to target these kinases and the most recent inhibitors facing the preclinical and clinical setting, also considering their structure-activity relationship (SAR).

Combined MEK and ERK inhibition overcomes therapy-mediated pathway reactivation in RAS mutant tumors

PLoS ONE, 2017

Mitogen-activated protein kinase (MAPK) pathway dysregulation is implicated in >30% of all cancers, rationalizing the development of RAF, MEK and ERK inhibitors. While BRAF and MEK inhibitors improve BRAF mutant melanoma patient outcomes, these inhibitors had limited success in other MAPK dysregulated tumors, with insufficient pathway suppression and likely pathway reactivation. In this study we show that inhibition of either MEK or ERK alone only transiently inhibits the MAPK pathway due to feedback reactivation. Simultaneous targeting of both MEK and ERK nodes results in deeper and more durable suppression of MAPK signaling that is not achievable with any dose of single agent, in tumors where feedback reactivation occurs. Strikingly, combined MEK and ERK inhibition is synergistic in RAS mutant models but only additive in BRAF mutant models where the RAF complex is dissociated from RAS and thus feedback productivity is disabled. We discovered that pathway reactivation in RAS mutant models occurs at the level of CRAF with combination treatment resulting in a markedly more active pool of CRAF. However, distinct from single node targeting, combining MEK and ERK inhibitor treatment effectively blocks the downstream signaling as assessed by transcriptional signatures and phospho-p90RSK. Importantly, these data reveal that MAPK pathway inhibitors whose activity is attenuated due to feedback reactivation can be rescued with sufficient inhibition by using a combination of MEK and ERK inhibitors. The MEK and ERK combination significantly suppresses MAPK pathway output

RAF dimer inhibition enhances the antitumor activity of MEK inhibitors inK‐RASmutant tumors

Molecular Oncology, 2020

The mutation of K-RAS represents one of the most frequent genetic alterations in cancer. Targeting of downstream effectors of RAS, including of MEK and ERK, has limited clinical success in cancer patients with K-RAS mutations. The reduced sensitivity of K-RAS-mutated cells to certain MEK inhibitors (MEKi) is associated with the feedback phosphorylation of MEK by C-RAF and with the reactivation of mitogen-activated protein kinase (MAPK) signaling. Here, we report that the RAF dimer inhibitors lifirafenib (BGB-283) and compound C show a strong synergistic effect with MEKi, including mirdametinib (PD-0325901) and selumetinib, in suppressing the proliferation of K-RAS-mutated non-small-cell lung cancer and colorectal cancer (CRC) cell lines. This synergistic effect was not observed with the B-RAF V600E selective inhibitor vemurafenib. Our mechanistic analysis revealed that RAF dimer inhibition suppresses RAF-dependent MEK reactivation and leads to the sustained inhibition of MAPK signaling in K-RAS-mutated cells. This synergistic effect was also observed in several K-RAS mutant mouse xenograft models. A pharmacodynamic analysis supported a role for the synergistic phospho-ERK blockade in enhancing the antitumor activity observed in the K-RAS mutant models. These findings support a vertical inhibition strategy in which RAF dimer and MEKi are combined to target K-RAS-mutated cancers, and have led to a Phase 1b/2 combination therapy study of lifirafenib and mirdametinib in solid tumor patients with K-RAS mutations and other MAPK pathway aberrations.

Phase I Expansion and Pharmacodynamic Study of the Oral MEK Inhibitor RO4987655 (CH4987655) in Selected Patients with Advanced Cancer with RAS-RAF Mutations

2014

Purpose: This phase I expansion study assessed safety, pharmacodynamic effects, and antitumor activity of RO4987655, a pure MEK inhibitor, in selected patients with advanced solid tumor. Experimental Design: We undertook a multicenter phase I two-part study (dose escalation and cohort expansion). Here, we present the part 2 expansion that included melanoma, non-small cell lung cancer (NSCLC), and colorectal cancer with oral RO4987655 administered continuously at recommended doses of 8.5 mg twice daily until progressive disease (PD). Sequential tumor sampling investigated multiple markers of pathway activation/tumor effects, including ERK phosphorylation and Ki-67 expression. BRAF and KRAS testing were implemented as selection criteria and broader tumor mutational analysis added. Results: Ninety-five patients received RO4987655, including 18 BRAF-mutant melanoma, 23 BRAF wildtype melanoma, 24 KRAS-mutant NSCLC, and 30 KRAS-mutant colorectal cancer. Most frequent adverse events were rash, acneiform dermatitis, and gastrointestinal disorders, mostly grade 1/2. Four (24%) of 17 BRAF-mutated melanoma had partial response as did four (20%) of 20 BRAF wild-type melanoma and two (11%) of 18 KRAS-mutant NSCLC. All KRAS-mutant colorectal cancer developed PD. Paired tumor biopsies demonstrated reduced ERK phosphorylation among all cohorts but significant differences among cohorts in Ki-67 modulation. Sixty-nine percent showed a decrease in fluorodeoxyglucose uptake between baseline and day 15. Detailed mutational profiling confirmed RAS/RAF screening and identified additional aberrations (NRAS/non-BRAF melanomas; PIK3CA/KRAS colorectal cancer) without therapeutic implications. Conclusions: Safety profile of RO4987655 was comparable with other MEK inhibitors. Single-agent activity was observed in all entities except colorectal cancer. Evidence of target modulation and early biologic activity was shown among all indications independent of mutational status. Clin Cancer Res; 20(16); 4251-61. Ó2014 AACR.

From basic research to clinical development of MEK1/2 inhibitors for cancer therapy

Journal of Hematology & Oncology, 2010

The Ras-dependent Raf/MEK/ERK1/2 mitogen-activated protein (MAP) kinase signaling pathway is a major regulator of cell proliferation and survival. Not surprisingly, hyperactivation of this pathway is frequently observed in human malignancies as a result of aberrant activation of receptor tyrosine kinases or gain-of-function mutations in RAS or RAF genes. Components of the ERK1/2 pathway are therefore viewed as attractive candidates for the development of targeted therapies of cancer. In this article, we briefly review the basic research that has laid the groundwork for the clinical development of small molecules inhibitors of the ERK1/2 pathway. We then present the current state of clinical evaluation of MEK1/2 inhibitors in cancer and discuss challenges ahead.

Exploring Small-Molecule Inhibitors Targeting MAPK Pathway Components: Focus on ERK, MEK1, and MEK2 Kinases in Cancer Treatment

Chemical biology letters, 2024

Protein kinase cascades activate extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases (MAPKs), which are involved in a variety of signal transduction pathways. This article will review the present state of MAPK pathway inhibitors, emphasizing the characteristics of tiny molecule blockers of the p38, MEK1, and MEK2 protein kinases. Many of these inhibitors have shown potential in experimental animal models of disease, and they are now being investigated in people for inflammatory and cancer diseases. Clinical trials are currently evaluating targeting a subset of cellular signaling cascades and signaling cascades that control pleiotropic cellular activity. These activities will have far-reaching consequences for managing a wide range of disorders. On the other hand, the Ras-Raf-MEK-ERK pathway is a clear therapeutic target because it is a standard downstream route for a range of critical growth factor tyrosine kinase receptors frequently changed or overexpressed in human malignancies. Several new medicines that target this route have been discovered and are currently being tested in clinical studies. BAY 43-9006 is one of the most intriguing new agents. Its ability to target Flt-3, c-Kit, and VEGFR-2, despite its initial development as a Raf kinase inhibitor, helps to explain its antiproliferative and antiangiogenic properties. This study will examine the ERK signaling pathway in both malignant and normal tissue, with an emphasis on new therapeutic approaches that target the ERK cascade at the Raf kinase level.