Regulation of sulphate assimilation inSaccharomyces cerevisiae (original) (raw)

Yeast, 1996

Abstract

ABSTRACT We examined how the activity of O-acetylserine and O-acetylhomoserine sulphydrylase (OAS/OAH) SHLase of Saccharomyces cerevisiae is affected by sulphur source added to the growth medium and genetic background of the strain. In a wild-type strain, the activity was repressed if methionine, cysteine or glutathione was added to the growth medium. However, in a strain deficient of cystathionine γ-lyase, cysteine and glutathione were repressive, but methionine was not. In strains deficient of serine O-acetyltransferase (SATase), OAS/OAH SHLase activity was low regardless of sulphur source and was further lowered by cysteine and glutathione, but not by methionine. From these observations, we concluded that S-adenosylmethionine should be excluded from being the effector for regulation of OAS/OAH SHLase. Instead, we suspected that S. cerevisiae would have the same regulatory system as Escherichia coli for sulphate assimilation; i.e. cysteine inhibits SATase to lower the cellular concentration of OAS which is required for induction of the sulphate assimilation enzymes including OAS/OAH SHLase. Subsequently, we obtained data supporting this speculation.

Nobuya Ishii hasn't uploaded this paper.

Let Nobuya know you want this paper to be uploaded.

Ask for this paper to be uploaded.